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ABSTRACT  

 
Subsurface tile drainage systems have contributed towards increasing agricultural 

production, but have also contributed towards water pollution by rapidly transporting 

excessive nutrient and agrochemicals to surface water and ground water. One of the pollution 

control strategies is to treat the tile drainage water or the contaminated subsurface water with 

denitrifying bioreactors. Wood chips have been used in denitrifying bioreactors, providing 

organic carbon and attachment surface area for denitrifiers. The focus of this research is to 

investigate fate of agrochemicals in wood chips from the in situ reactors and their potential 

effects on denitrification and the denitrifiers. The selected agrochemicals for study are 

atrazine, enrofloxacin, monensin and sulfamethazine.  

Partition coefficients of atrazine, enrofloxacin, monensin and sulfamethazine were 

determined by single-point sorption experiments by using wood chips from an in situ reactor. 

Of the four chemicals tested, enrofloxacin had the highest partition coefficient (Kow) while 

sulfamethazine had the lowest. Atrazine and monensin had moderate sorption coefficients. In 

addition, partition coefficients for the four chemicals for wood chips were larger than the 

partition coefficients for soils obtained close to the in situ reactor. Freundlich distribution 

coefficients (Kf) for isotherm studies for the four chemicals were in the order of (highest to 

lowest): enrofloxacin > monensin > atrazine > sulfamethazine. Desorption hysteresis were 

found for enrofloxacin, atrazine and sulfamethazine when the wood chips were desorbed by 

water. For monensin, the desorption aqueous phase concentrations were larger than the 

adsorption aqueous phase content. A possible reason for the larger desorption concentration 

was that the monensin adsorbed onto wood chips were on the eternal surface of the wood 

chips due to its larger molecular structure which allowed monensin to be easily desorbed. 

Only 5% of enrofloxacin, 14% of monensin, 23% of sulfamethazine and 25% of atrazine 

were recovered from the wood chips after two desorption and an acetonitrile-water extraction 

indicating the strong binding of the chemicals onto wood chips.  

Degradation studies with atrazine, enrofloxacin, and sulfamethazine onto wood chips 

indicate that a large majority of the chemical mass was removed from the aqueous phase 

within the first 48 hours followed by a slow removal over time. Dissipation rates were 

estimated using the availability-adjusted first-order degradation model. Disappearance of 
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sulfamethazine was slower than disappearance of enrofloxacin and atrazine. No impact on 

denitrifiers as measured by the denitrification potential assays, most-probable-number (MPN) 

and nosZ1 copy number was found for atrazine at an initial concentration of 5 mg L-1. The 

MPN was reduced under enrofloxacin treatment after 2 days of the incubation; however, at 

the end of the experiment the denitrifier MPN was similar to control treatment MPN. 

Sulfamethazine was found to initially impact the denitrification (both MPN, nosZ1 copy 

number and denitrification potential) but after 5 days the denitrification potential assays, 

most-probable-number (MPN) and nosZ1 copy number were found to be similar to that of the 

control.  
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CHAPTER 1. INTRODUCTION 

1.1 General Introduction 

Subsurface tile drainage systems can improve agricultural production by draining and 

maintaining the subsurface water levels of the fertile lands. However, the tile drainage can 

negatively impact surface and subsurface water quality through contamination by nutrients 

such as nitrates and organic contaminants (i.e., pesticides and veterinary antibiotics). Nitrate 

(NO3
--N) pollution is a concern as it can cause eutrophication in lakes and rivers and hypoxia 

conditions as in the Gulf of Mexico. Subsurface tile drainage water is one of the major 

contributors of NO3
--N in the upper Midwest (Nangia et al., 2010). The sources of nitrogen in 

tile water are fertilizers (50%) and animal manure (15%) (Goolsby and Battaglin, 2000). 

Reduction in nitrogen-based fertilizer use may not be sufficient to decrease the NO3
--N 

concentration to levels of minimum impact. As such, novel management and control 

strategies are needed. One of the strategies is the treatment of nitrate by in situ denitrifying 

reactors and denitrifying walls where nitrate is reduced when tile water flows through them 

under denitrifying conditions (Schipper and Vujdovic-Vukovic, 2000, Jaynes et al., 2008, 

Greenan et al., 2006). In situ reactors or denitrifying walls are typically constructed with a 

mixture of organic residues such as wood chips or saw dust, and sand to create the 

denitrifying conditions.  

In addition to denitrification, the wood chips in the bioreactors can also remove 

organic contaminants such as herbicides and insecticides (Boudesocque et al., 2008), 

lipophilic organic compounds (Trapp et al., 2001) and phenolic compounds (Barrera – Garcia 

et al., 2008). Pesticides and herbicides use have improved crop yields but their presence in 

various media can be detrimental to the environment. Pesticides and herbicides application 

have increased rapidly since 1950 with a 1992 pesticides market value of US$ 25,200 million 

in North America, Latin America, and Eastern Asia countries and a 1992 herbicide  market 

of US$ 11,440 million in the world (Yudelman et al., 1998). In recent years, attempts have 

been made to reduce consumption rates. Major concerns with pesticide and herbicides use 

include development of resistance in target species, injury in non target species and overall 

human and ecological damage such as decrease in the number of bird species in the United 
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States (Wheeler, 2002). Another concern is the endocrine disruptor activity of herbicides 

such as atrazine which can impact reproduction and growth development (Sass and 

Colangelo, 2006). For example, as a result of exposure to 2.5 µg L-1 of atrazine, African 

clawed frogs (Xenopus laevis) breeding gland size of about 1.8 µm2 was found to decrease, 

spermatogenesis and fertility were reduced and demasculinization of laryngeal development 

was observed (Hayes et al., 2010). 

In addition to pesticides, veterinary pharmaceuticals and their metabolites can enter the 

surface and subsurface water after application of manure in the fields. Microorganisms can 

develop resistance to these veterinary pharmaceuticals which in turn can indirectly impact 

human health through the ineffective treatment of these microorganisms by the antibiotics 

(Casewell et al, 2003). Interactions of antibiotics with soil microorganisms include: impact 

on the degradation or detoxification of the anthropogenic chemicals by soil microorganisms, 

inhibition of growth of certain communities, changes in relative abundances of communities 

among each other, and development of resistance for survival (Kemper, 2008).  

At this time, the fate of nitrate in denitrifying in situ bioreactors or denitrification walls 

has been evaluated, but the fate of agrochemicals and veterinary pharmaceuticals in wood 

chip reactors and the effect of these chemicals on microbial activity are unknown. Several 

factors such as the type and age of wood chips in the bioreactors, pH conditions, and flow 

rates through the bioreactors will affect the sorption and degradation of the agrochemicals 

chemicals while the concentration levels of the agrochemicals may affect their 

biodegradation in the bioreactors. The overall goal of this study is to understand the fate 

especially the partition behavior of these agrochemicals onto bioreactor wood chips and their 

potential impact on denitrification potential in the bioreactors. Chemicals selected for that 

study were atrazine, a widely used herbicide for corn; and three veterinary antibiotics 

commonly found in manure: enrofloxacin (a fluoroquinolone), monensin (an ionophore) and 

sulfamethazine (a sulfonamide). The specific objectives of this study were:  

1) Investigate the sorption-desorption of the selected chemicals onto wood chips and 

compare the sorption results to the sorption onto soils obtained close to the wood 

chips bioreactor  

2) Investigate the degradation/dissipation of the selected compounds in wood chips 
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3) Investigate the interference of the selected chemicals on the denitrification potential 

of the reactors and the denitrifier community. 

1.2 Thesis Organization  

The thesis contains five chapters with Chapter 1 providing a broad overview of the 

issues and the goals and objectives of the study. Chapter 2 consists of the literature review 

providing information on wood chip bioreactors, microbial processes occurring in the 

bioreactors, environmental concentrations, risks, and sorption and degradation of the selected 

chemicals. Chapter 3 discusses the batch sorption experiments of the selected chemicals onto 

wood chips and soils. Chapter 4 describes the degradation/disappearance of selected 

chemicals in wood chips and impacts of their presence on denitrifying communities. Finally, 

Chapter 5 provides the main conclusions of the batch sorption and degradation studies and 

implications and work for future research.  

1.3 References 
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CHAPTER 2. LITERATURE REVIEW  

 
 

This chapter consists of two parts: a discussion on wood chip in situ bioreactors for 

nitrate removal and a discussion on potential agrochemicals that can be removed by the wood 

chip bioreactors and their interactions with wood chips and the microbial community 

established on them. 

2.1 Denitrification and Wood Chip Bioreactors 

In the upper parts of the Midwest, excessive water in soils are drained with subsurface 

tile drainage system to increase agricultural production. Dissolved nutrients, sediment and 

soil particles and pesticides can be transported rapidly from the field through the tile drainage 

system to water bodies and as a result impair surface and subsurface water quality (Randall et 

al., 1997). Nitrate (NO3
--N) contamination of surface water is of concern especially in the 

Midwest. The total annual nitrogen load in the Gulf of Mexico between 1980 and 1996 was 

estimated to be 1,568,000 tonne yr-1, where 61% of the N load was NO3
--N. Most of the 

nitrogen in the Mississippi basin comes from agricultural lands in southern Minnesota, Iowa, 

Illinois, Indiana and Ohio (Goolsby et al., 2001) where tile drainage is a common practice. 

There have been efforts to reduce the nitrogen in surface and ground waters, most 

commonly via denitrification. However, in subsurface environments, denitrification is limited 

due to the availability of organic carbon (Yeomans et al., 1992, Cambardella et al., 1999). 

Smith et al. (2001) proposed adding formate as an electron donor for the denitrifiers in the 

remediation of nitrate-contaminated groundwater where they found decrease of nitrate and 

formate concentrations by 80-100% and 60-70%, respectively. At the field scale, nitrate in 

groundwater can be reduced via denitrification by placing a porous media such as sawdust or 

wood chips in the flow path of the groundwater (Robertson and Cherry, 1995). Schipper and 

Vojdovic-Vukovic (2000) constructed a denitrification wall of a sawdust-sand mixture (30% 

sawdust) and observed a reduction in nitrate concentrations from 5-16 mg NO3
--N L-1 to 

below 2 mg N L-1 in 1-10 days. Denitrifiers on the media are responsible for nitrate removal. 

In a wood chip bioreactor, the carbon source is provided by the wood chip or sawdust itself, 

and the media is kept submerged to keep the conditions anaerobic (Jaynes et al., 2008). 
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Long-term nitrate removal studies by denitrification walls indicates that nitrate loss was via 

denitrification (Robertson et al., 2000) and not by immobilization of nitrate on the media 

(Greenan et al., 2009). Jaynes et al. (2008) compared NO3
--N losses in tile drainage over 5 

years in field-scale conventional drainage system, deep tile system and denitrification wall 

(with wood chips) and found that NO3
--N concentrations in the deep tile system (0.6 m 

deeper than the pipes in the conventional system) and the conventional system did not differ 

significantly, while the denitrification wall (0.6 m wide x 1.83 m deep) reduced nitrate load 

in tile water on average by 55% with a mass loss of 29 kg N ha-1.  

Blowes et al. (1994) used a fixed-bed reactor made of a mixture of coarse sand and tree 

bark, wood chips or leaf compost treated tile drainage water at a rate of 10-60 L day-1 

containing 3-6 mg L-1 NO3
--N. Greenan et al. (2006) used a mixture of various carbon 

sources (wood chips, wood chips amended with soybean oil, cornstalks, and cardboard 

fibers) and subsurface soil as the media for an in situ reactor and found that after 180 days of 

incubation, nitrate removal with wood chips (80.13%) was less efficient than removal with 

corn stalks (91.75%). However, removal rate of nitrate was found to be steady over a longer 

period with wood chips indicating that wood chips would be more effective in the field than 

corn stalks (Greenan et al., 2006). Saliling et al. (2007) evaluated wood chips and wheat 

straw as an alternative to plastic media for treatment of aquaculture wastewater with 200 mg 

NO3
--N. They used 3.8-L reactors (40-cm packed height x 10-cm diameter) and removed 

99% of nitrate in wastewater with a denitrification rate of 1330 g N m-3d-1 for plastic media 

(Kaldnes plastic) and 1360 g N m-3d-1 for wood chips and wheat straw media. For nitrate 

removal wood chips and wheat straw are low-cost media compared to plastic media, 

however, 16.2% and 37.7% of the masses of wood chips and wheat straw, respectively, were 

lost in 140 days. Van Driel et al. (2006) used lateral flow (13 m x 1.2 m x 1.1 m) and upflow 

(10 m x 2 m x 0.8 m) reactors consisting of coarse (1-50 mm) and fine (1-5 mm) wood 

mixture to treat nitrate in tile water at a cornfield and a golf course site. They monitored 

nitrate removal rates for 26 months. Annual NO3
--N removal rate of 12 kg N yr-1 in the 

cornfield was maintained when the flow rate was 7.7 L min-1 and the nitrate load in influent 

was 11.8 mg N L-1. For the golf course field reactor, 3.1 kg N yr-1 removal rate was achieved 

when the flow rate was 7.8 L min-1 and the nitrate concentration was 3.2 mg N L-1.  
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Greenan et al. (2009) found a correlation between the water flow/nitrate loading rate 

and nitrate removal rate with a laboratory column study where nitrate removal efficiency of 

100, 64, 52 and 30% was achieved for flow rates of 2.9, 6.6, 8.7, 13.6 cm d-1 respectively. 

Chun et al. (2009) evaluated the impact of water flow rate and retention time on nitrate 

removal of a wood chip subsurface bioreactor. At high retention times (low flow rate, i.e., 

5.3-6.8 cm s-1) and low retention times (high flow rates, i.e., 20-28 cm s-1) nitrate removal 

rates of 100% and 10-40 %, respectively were observed in a laboratory-scale polyvinyl 

chloride (PVC) pipe (0.25 m in diameter x 6.1 m in length) column study. They suggested 

that the decrease in nitrate reduction rate at high flow rates may be due to wash off of the 

biofilm on the bioreactor.  

Denitrification can be performed by a variety of microorganisms by using oxidized 

nitrogenous compounds as electron acceptors. This key process occurs in soils, sediments, 

wastewater treatment plants and wood chip denitrifying reactors. The rapid transformation of 

nitrite to nitrogen gas prevents accumulation of nitrite and nitric oxide in the environment 

which can influence environmental quality (Ka et al., 1997). In order to determine the 

activity of denitrifiers, two major approaches can be employed: by conducting short-term 

denitrification enzyme activity assays and by measuring the denitrification potential (Luo, 

1996). Both denitrification enzyme assay (DEA) and denitrification potential determine the 

denitrification rate based on nitrous oxide (N2O) production when conversion of N2O to N2 is 

blocked. The obstacles of measuring denitrification activity are rapid conversion of N2O to 

N2 and bias in measurements due to cell growth and synthesis of new N2O reductase. Tiedje 

et al. (1989) reported that acetylene gas inhibits conversion of N2O to nitrogen (N2 gas) by 

inhibiting nitrous oxide reductase and can be used in denitrification rate estimation studies. 

DEA should be performed in short time periods to minimize interference of enzyme 

production of new organisms (Luo, et al., 1996). Tiedje et al. (1989) suggested measurement 

of denitrification activity in the presence of chloramphenicol to inhibit synthesis of new 

denitrifying enzymes. The measurements are generally considered as denitrification potential 

rather than denitrification activity because in laboratory experiments, the microorganisms are 

under optimum conditions (anaerobic and nitrate is not limiting at all times) and, therefore, 
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denitrification rate is at its maximum value, which may not be reflecting the actual activity in 

soils or natural environments.  

On the other hand, when the soil denitrifier populations need to be measured, the most 

probable number (MPN) is used. Lensi et al. (1995) enumerated soil denitrifier bacteria by 

incubating 10-fold soil dilutions in potassium nitrate (5 mM) and cyclohexamide media at 28 

°C for 2 weeks and checking the presence of nitrite and nitrate with Griess–Ilosway’s and 

Morgan’s reagents. Lensi et al. (1995) eliminated fungi, which were found to be important 

contributors to denitrification (Appleford et al., 2008). 

Populations based on MPN may not reflect all of the denitrifier population (Martin et 

al., 1988), as not all microorganisms can be cultured in the selected media. More recently, 

molecular tools were developed to measure the abundance of denitrifiers. Quantitative 

polymerase chain reaction (qPCR) protocols were developed and applied by several 

researchers (Henry et al., 2006, Miller et al., 2009, Nogales et al., 2002, Smith et al., 2007, 

Siciliano et al., 2007) to determine the prevalence of genes encoding enzymes catalyzing 

denitrification reactions. Amplified functional genes involved in denitrification are: the 

nitrate reductase encoding gene nar (Lu et al., 2007) and the periplasmic nitrate reductase 

encoding gene napA (Flanagan et al., 1999), nitrite oxide reductase gene nirS (Braun and 

Zumft, 1992) and nitrous oxide reductase gene nosZ (Henry et al., 2006). N2O reductase can 

be purified from only gram negative bacteria (Coyle et al., 2005, Synder et al., 1987) and is a 

key enzyme that is not present in all denitrifiers (Henry et al., 2006). For instance, 

Agrobacterium tumefaciens is able to synthesize periplasmic nitrate reductase, copper nitrite 

reductase, and nitric oxide reductase with genes encoding them, but is unable to synthesize 

nitrous oxide reductase and produce N2 (Wood et al., 2001). Examples of primers used in 

qPCR include nosZF and nosZR primers designed by Kloos et al. (2001) and degenerate 

primers of nosZ1 (259 bp) and nosZ2 (267 bp) from nosZ sequence of Pseudomonas 

fluorescens designed by Henry et al., (2006). 
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2.2 Selected Organic Contaminants in the Environment 

2.2.1 Consumption rates and usage  

 
In the U.S., 556 million lb of herbicide active ingredient was applied which made 

herbicides the most widely used pesticides (Short and Colborn, 1999). Triazines are most 

commonly used for weed control in many crops including corn, sorghum, citrus orchards, 

olive groves, fruit trees, grapes, sugarcane and Christmas trees (Cabrera et al., 2008). The 

total use of triazines accounted for 43% of all herbicides in Europe in 2003 (Eurostat, 2007). 

Among all herbicides, atrazine was applied more than others with 68-73 million lb in 1995 in 

United States (Short and Colborn, 1999). In Quebec, Canada, 27% of all pesticide sales were 

atrazine in 1985 (Cossette et al., 1988). In 1988, 1,045,110 kg active ingredient of atrazine 

was applied, comprising of 15% of all pesticide application in Ontario, Canada (Moxley et 

al., 1989).   

To conserve the necessary nutrients for agricultural production, manure is used in 

many farms. Although manure has the benefit of not using synthetic fertilizers, veterinary 

pharmaceuticals used to control bacterial diseases in livestock and promote meat production 

enter the environment via manure application to the field (Tolls, 2001).  Typical classes of 

veterinary pharmaceuticals the most common used in farm animals are tetracyclines 

(tetracycline, chlorotetracycline and oxytetracycline), macrolides (tylosin and erythromycin), 

sulfonamides (sulfamethazine and sulfamethoxazole), fluoroquinolones (enrofloxacin and 

sarafloxacin) and ionophores (monensin and lasalocid). 

In European Union countries and Switzerland, about 13,288 tons of antibiotics were 

used in 1999 (FEDESA, 2001). In industrialized countries, sulfonamides are one of the more 

widely used antibiotic classes (Campbell, 2002). In the U.S., sulfonamide use ranks fourth 

among all the antibiotics sold for animal husbandry (AHI, 2001). Annually in the U.S., 1.5 

million kg of monensin is used for cattle and poultry production, accounting for 13% of the 

total subtherapeutic usage for animal husbandry (Mellon et al., 2001). Total quinolone 

production in the U.S., European Union, Japan and South Korea was about 120 tonnes in 

1998 while the annual quinolone consumption in China is 470 tons for animal health 

purposes (WHO, 1998).  
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2.2.2 Characteristics of atrazine, enrofloxacin, sulfamethazine and  monensin 

 
Triazines are pre-emergent herbicides, applied directly to the soil or crop as aqueous 

sprays and are the most widely used herbicides (Cabrera et al., 2008). The most commonly 

used s-triazine is atrazine which was selected to represent triazines in this study. The 

chemical name of atrazine is 6-chloro-N-ethyl-N’-isopropyl-1,3,5-triazine-2,4-diamine 

(Formula: C8H14ClN5, CAS Number: 1912-24-9; molecular weight-215.69) and its 

chemical structure is illustrated in Figure 1a. It is moderately soluble in water with a 

solubility of 28 mg L-1 at 20 C° (Worthing and Walker, 1987) and a pKa of 1.7. In acidic 

waters (pH = 5) at 20 °C, degradation of atrazine occurs via hydrolysis and N-dealkylation 

while in neutral or alkaline waters, breakdown is relatively negligible (Cohen et al., 1984). In 

soils, it is persistent in temperate climates (Ashton, 1982). Due to its potential to contaminate 

ground water, it is classified as Restricted Use Pesticide (RUP) by EPA (EPA, 2008).  

Fluoroquinolone is a class of pharmaceuticals, basically derived from nalidixic acid 

and polycyclic derivatives. Fluoroquinolones (FQs) were discovered in 1960s and were used 

to treat urinary infections in humans. The most widely used fluoroquinolone in human 

medicine is ciprofloxacin, a second generation FQ. They are also used for agriculture, and 

veterinary purposes (Picó and Andreu, 2007) due to their activity against a broad spectrum of 

microorganisms such as E. coli and Pasteurella multocida and Salmonella causing diseases 

in livestock (Prescott et al., 2000). For veterinary use, enrofloxacin is one of the most 

important fluoroquinolones (Picó and Andreu, 2007) used to control infections in chickens, 

cows and pigs. For cattle, sheep and goats, fluoroquinolones are used to treat acute 

respiratory diseases, and in the U.S. they have been only approved for treatment of 

pneumonia. For the swine industry, FQs are administered for Mycoplasma hyopneumoniae 

infections. For poultry, sarafloxacin and enrofloxacin are approved for the treatment of E. 

coli infections (Prescott et al., 2000).  

Enrofloxacin (CAS Number: 93106–60–6, Formula: C19H22FN3O3, molecular weight: 

359.4) has an ethyl group attached to the piperazine ring and various functional groups that 

can ionize (see Figure 1b). Dissociation constants of enrofloxacin are; pKa1 = 5.94 

(carboxylic acid in 3–position) and pKa2 = 8.70 (piperazinyl group in the 7-position). 

Depending on the pH, enrofloxacin can be found as an acidic cation, a neutral un-ionized 
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form, an intermediate zwitterion and a basic ion. At low pH, protonation of the carboxyl and 

piperazinyl groups occur (Lizondo et al., 1997).  

FQs are slightly soluble in water, but most of FQs are lipophilic (Picó and Andreu, 

2007). Enrofloxacin is a broad–spectrum antibiotic, controlling mostly Gram-negative 

pathogens such as Pseudomonas aeruginosa and Enterobacteraceae (Angulo et al., 2000). Its 

mode of action is to inhibit the bacterial DNA gyrase enzyme (Prescott et al., 2000). The 

cyclopropyl group at N-1 position enhances its activity on both Gram-positive and Gram-

negative, while the ethyl group on piperazine ring enhances its adsorption and decreases its 

antipseudomonal activity (Walker et al., 1990; 1992). Minimum inhibition concentrations of 

enrofloxacin for target species vary between 0.03 and 2 µg mL-1 (Walker et al., 1990; 1992). 

Sulfonamides are derived from sulfanilamide and are broad-spectrum antimicrobials. 

They are effective against both Gram-positive and Gram-negative bacteria including 

Chlamydia spp. (Baroni et al., 2008). Their mode of action is on folic acid biosynthesis in 

bacteria by competing for dihydropteroate synthetase which interferes with the incorporation 

of para–aminobenzoic acid (PABA) with the folic (pteroylglutamic) acid. The chemical 

structure of sulfamethazine is illustrated in Figure 1c. pKa values for sulfonamides vary from 

5.0 to 10.4 (Prescott et al., 2000). The essential part of the molecule is the para-NH2 group 

with the amide NH2 group substitutions changing the antimicrobial activity of the compound. 

Minimum inhibition concentrations (MIC90) of sulfonamides can be as low as 2 µg L-1 and 

can be as high as 515 µg L-1 for Gram-negative aerobes (Prescott et al., 2000). 

Sulfamethazine (4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide) (CAS 

Number: 57–68–1, Formula: C12H14N4O2S, molecular weight: 278,33) is the most widely 

used sulfonamide for animal husbandry (Huang et al., 2001). The water solubility of 

sulfamethazine is 1500 mg L-1 at 29 ºC (Merck Index, 2001). The chemical structure of 

sulfamethazine is presented in Figure 1c.  

The ionophores are a relatively new class of antibiotics, most commonly used to 

increase feed efficiency and anticoccoidal activity. They are fermentation products of 

Streptomyces species. The mechanism of inhibiting bacteria by ionophores is to change cell 

membrane permeability by complexing with sodium anions on the membrane and driving 

passive extracellular potassium ion transport, which replaces hydrogen ions and lowering the 
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intracellular pH. They are more effective on Gram-positive bacteria than Gram-negative 

bacteria, which favor production of propionic acid rather than acetic acid and butyric acid in 

rumen flora (Prescott et al., 2000). 

Monensin, a commonly used ionophore, is a polyether monocarboxylic acid, produced 

by Streptomyces cinnamonensis. Formula of monensin sodium salt is C36H61NaO11 with a 

molecular weight of 692.85 and CAS Number of 22373–78–0. The water solubility of 

monensin is 4.8-8.9 mg L-1 (ELANCO, 2006) and the pKa value is 10.5 (Hoogerheide and 

Popov, 1979). Monensin sodium salt comprises of 4 factors: A, B, C, and D. Factor A 

constitutes more than 90% of monensin while factors B, C and D form the rest of the 

molecule (ELANCO, 2006). The chemical structure of monensin A is shown in Figure 1d. 

Although ionophores are more active on gram positive bacteria, monensin is used to control 

some gram negative bacteria including Campylobacter spp., Brachyspira (Serpulina) 

hyodysenteria, coccidia and Toxoplasma (Prescott et al., 2000). Additionally, more than 90% 

of monensin is excreted together with the manure (Donoho, 1984).  
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Figure 1. Chemical structures of (a) atrazine, (b) enrofloxacin, (c) sulfamethazine, and 

(d) monensin A.  
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2.2.3 Sources and environmental concentrations 

 
Atrazine concentrations in surface waters and ground waters have been monitored in 

most parts of the world. In St. Lawrence River (Canada), measured atrazine concentrations 

were 10.4 and 3.4 µg L-1 in 1990 and 1991, where concentrations in the tributaries of the 

river were 31.1 and 27.9 ng L-1 for the same years (Lemieux, et al., 1995). Likewise, mean 

atrazine concentrations in 147 Midwestern streams were monitored between 1989 and 1998 

where the concentrations ranged between 4.27 and 10.9 µg L-1 (Scribner et al., 2000). The 

same study showed that atrazine concentrations were higher than the concentrations of other 

herbicides such as alachlor and cyanazine. A two-year monitoring study by Wu (1981) 

showed that atrazine concentrations in an estuary of the Chesapeake Bay were between 6 and 

190 ng L-1 and were unexpectedly higher in rainwater with concentrations ranging from 3 to 

2190 ng L-1. In tile water from Waseca, MN, estimated concentration of atrazine was 1.24 µg 

L-1in 1987 (Buhler et al., 1993).  

  Veterinary antibiotics on the other hand were found in water sources at concentrations 

usually lower than pesticide concentrations. Kolpin et al. (2002) reported mean 

concentrations of sulfamethazine of 0.02-0.22 µg L-1 in surface waters in a monitoring study 

of more than 100 rivers. Sulfonamides are highly water soluble and have low octanol-water 

partition coefficients (Kow), and therefore are mobile in soils and pose risks in contaminated 

groundwater (Batt et al., 2006). A sulfonamide monitoring study in Idaho revealed wells of 

nearby confined animal feeding operations were contaminated with both sulfamethazine and 

sulfadimethoxine at concentrations of 0.076-0.22 µg L-1 and 0.046-0.068 µg L-1, respectively 

(Batt et al., 2006). They also measured high nitrate concentrations (up to 39.1 mg L-1 nitrate) 

in the same wells. Besides surface and subsurface waters, sulfonamides have been detected in 

soils at concentrations as high as 11 ng g-1 (Höper et al., 2002). 

2.2.3  Transport and fate in soils 

 
Parent and daughter compounds of pesticides and veterinary medicine in manure enter 

the environment directly through their applications to cropland. After agrichemicals come in 

contact with soil, the compounds may partition into soil particles, may leach into ground 

water via soil and percolation water, and undergo biotic or abiotic degradation. 
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2.2.3.1 Sorption 

 
Sorption is one of the major processes affecting the fate of organic compounds in the 

environment. In order to predict movement of agrichemicals in soils, partition coefficients 

are estimated. Atrazine sorption was found to be strongly correlated to the total organic 

carbon or matter content of the soils. In addition, the aromaticity of the organic matter was 

also found to influence atrazine sorption (Spark and Swift, 2002, Kulikova and Perminova, 

2002). Work done by Novak et al. (1997) indicates that besides soil organic carbon, clay 

content and pH of the soil also have an impact on sorption of atrazine on soils. Moorman et 

al. (2001) reported Freundlich partition coefficients (Kf) of 0.43, 0.51 and 0.55 for atrazine 

sorption onto subsurface oxidized till, loess and alluvium, respectively. Dissolved organic 

matter addition to soil increased atrazine sorption coefficients (Kd) by a factor of 1.1 to 3.1 

(Ling et al., 2006). Atrazine adsorption onto fluvo-aquic soil was found to increase from 24% 

to 77% by increasing the contact time from 24 hours to 72 hours (Deng et al., 2007).  

While it is common to explain partitioning of pesticides in soils based on organic 

carbon content of the soils, this rule does not typically apply for all veterinary antibiotics 

(Kümmerer, 2004) where only weak correlations between organic carbon normalized 

sorption coefficients (Koc) and octanol-water partition coefficients (Kow) have been observed 

by Tolls (2001). Non-hydrophobic interactions including surface complexations, H-bonding, 

and ion exchange should be taken into consideration in predicting sorption behavior of both 

pharmaceuticals and pesticides (Tolls, 2001).  

Lertpaitoonpan et al. (2009) found that organic carbon content of the soil and the pH 

influence sulfamethazine sorption onto soils with linear sorption coefficients (Kd) of 0.58 and 

3.91 L kg-1 at pH 5.5 with organic carbon contents of 0.1% and 3.8%, respectively. When pH 

was at 9, the Kd values decreased to 0.23 and 1.16 L kg-1 for soils with organic carbons of 

0.1% and 3.8%, respectively. When the pH of the soil was below the sulfamethazine pKa2, 

hydrophobic sorption was the dominant sorption mechanism but when the pH was above 

pKa2, surface sorption was also involved (Lertpaitoonpan et al., 2009). Higher sulfamethazine 

sorption was observed with an increase in humic acid on smectite clay minerals (HA:clay 

mass ratio of 1:5) due to the abundance of carboxyl moieties and aliphatic carbon content of 

the humic acid-clay complex (Gao and Pedersen, 2010).  
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Nowara et al. (1997) found that fluoroquinolone carboxylic acid derivatives 

(fluoroquinolones) sorb strongly onto clay particles causing an expansion of the spacing 

between the layers of montmorillonite clays. They estimated that sorption coefficients for 

enrofloxacin onto clay minerals ranged from 260 and 5610 L kg-1. Freundlich sorption 

coefficients (Kf) of enrofloxacin onto loamy sand (OC - 2.27%) and sandy soil (OC - 0.59%) 

were found to be 0.66 and 0.32 L kg-1, respectively (Ötker Uslu et al., 2008).  

In contrast to sorption of fluoroquinolones, sorption of monensin onto soils was lower with a 

Kd of 9.3 L kg-1 (Kumar et al., 2005). Linear sorption coefficients of monensin onto soils 

were found to be between 0.915 (for a soil with CEC of 4.3 cmol(+) kg-1) and 33.7 L kg-1 (for 

a soil with CEC of 26.5 cmol(+) kg-1) which corresponded to Koc values of 143 and 1160 L 

kg-1 (Sassman and Lee, 2007).  

2.2.3.2 Degradation  

 
Degradation of triazines in soils depends on the soil type and environmental conditions 

including soil temperature and soil pH (Bowman, 1989). Biodegradation of atrazine and its 

metabolite production in various environments and a variety of microorganisms are 

documented in Behki et al. (1986) and Giardina et al. (1980). Biodegradation of atrazine in 

wetland soils under anaerobic conditions was found to occur with the production of 

hydroxyatrazine, deethylatrazine and deethylatrazine. Atrazine was found to have a half life 

of 38 days in anaerobic wetland soils at 24 °C producing hydroxyatrazine and deethylatrazine 

(Seybold et al., 2001). The s-triazine ring which is a hexameric structure is shown in Figure 2 

and the common atrazine metabolites found for aerobic and anaerobic conditions are listed in 

Table 1. Atrazine in subsurface soils has a half life of 5.2 yr (Arena subsurface soil) and 1.4 

yr (Waunakee subsurface soil) (Rodriguez and Harkin, 1997)  

 Donnelly et al (1993), investigated atrazine (1-4 mM) degradation by 9 mycorrhizal 

fungi species in the presence of ammonium tartrate (0.0, 1.0, and 10.0 mM) as nitrogen 

source. At the end of 8-week incubation period, incorporation of atrazine molecules into 

biomass ranged between 0.59 and 11.38% for the fungal species. Shapir et al. (1998) took 

sediment samples from a shallow aquifer (from 210-230 cm) in a corn field receiving 

atrazine and amended it with atrazine solution (0.01 mg L-1 to 10 mg L-1) and Pseudomonas 
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sp. strain ADP culture. They found that atrazine mineralization by this strain in 4 days varied 

between 75% and 48% at atrazine concentrations of 0.01 mg L-1 and 10 mg L-1, respectively. 

The major degradation step of atrazine in soils by Pseudomonas sp. strain ADP is 

dechlorination (Shapir and Mandelbaum, 1997). Delftia acidovorans D24 strain isolated from 

Danube river water, Hungary was found to mineralize atrazine (100 µg L-1) as both carbon 

and nitrogen source, producing primarily hydroxyatrazine as the intermediate product 

(Vargha et al., 2005).  
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Figure 2. General structure of s-triazine ring 
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Table 1.Atrazine and its major metabolites in the environment (functional groups (R) 
adopted from Radosevich et al., 1995). 

Common Name Chemical Name 
Functional Groups 

R1 R2 R3 

Atrazine 2-Chloro-4-ethylamino-6-
isopropylamino-striazine 

(CIET) 

Cl C2H5NH C3H7NH 

Deethylatrazine 2-Chloro-4-amino-6-
isopropyl-amino-striazine 

(CIAT) 

Cl NH2 C3H7NH 

Deisopropylatrazine 2-Chloro-4-ethylamino-6-
amino-s-triazine 

(CEAT) 

Cl C2H5NH NH2 

Deethyldeisopropylatrazine 2-Chloro-4,6-diamino-s-

triazine (CAAT) 

Cl NH2 NH2 

Hydroxyatrazine 2-Hydroxy-4-ethylamino-6-
isopropylaminos- 
triazine (OIET) 

OH C2H5NH C3H7NH 

Deethylhydroxyatrazine 2-Hydroxy-4-amino-6-
isopropyl-amino-striazine 

(OIAT) 

OH NH2 C3H7NH 

 

Sulfonamides can be degraded by photo catalytic activity. Half-lives of 

sulfamethoxazole in pond water and sediment under light conditions (7.3 days and 4.9 days) 

were shorter than under dark conditions (47.7 days and 10.1 days) (Lai and Hou, 2008). The 

same study showed that half lives of four sulfonamides (sulfadiazine, sulfadimethoxine, 

sulfamethazine and sulfamethoxazole) at 50 mg L-1 initial concentration in pond water under 

light conditions ranged from 8.0-48.9 days for sterile treatments and 1.7-7.3 days for non 

sterile treatments.In a similar manner, half lives of that sulfonamide compounds 

(sulfadiazine, sulfadimethoxine, sulfamethazine and sulfamethoxazole) in sterile and non-

sterile sediment ranged between 6.5-47.3 days and 0.7-5.4 days, respectively, indicating 

microbial degradation was occurring. Another study emphasizing importance of microbial 

degradation of sulfonamides by Accinelli et al. (2007) showed sulfonamide persistence in 

soils was lower when soils were amended with liquid swine slurry which is due to the higher 

microbial activity.  

Fluoroquinolones are resistant to hydrolysis and degradation at high temperature 

making them fairly stable in the environment. However, they can be photolyzed under UV 
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light (Thiele-Bruhn, 2003). Photodecomposition of FQs occurs via oxidation, dealkylation, 

and cleavage of the piperazine ring (Sukul and Spiteller, 2007). Burhenne et al. (1997) 

estimated the half life of enrofloxacin to be about 36.2 minutes under an irradiation intensity 

of 200 W/m2, where the degradation was found to be occurring at the piperazine ring.  

Knapp et al. (2005) investigated enrofloxacin degradation and ciprofloxacin formation 

in outdoor mesocosms and estimated enrofloxacin half lives to be between 0.8 days and 72 

days based on different light conditions.  By deethylation of the ethylpiperazine ring, 

enrofloxacin can be phototransformed to ciprofloxacin. Biodegradation of enrofloxacin was 

found to be limited due to its bioavailability since it binds strongly to soil or manure 

(Wetzstein et al., 1999).  Indigenous agricultural soil isolates of Basidomycetes can degrade 

enrofloxacin by cleaving the fluoro–aromatic bond (Wetzstein et al., 2005). White and brown 

wood–rotting fungi species such as Gloeophyllum striatum were found to mineralize 53% of 

enrofloxacin in 8 weeks of incubation (Martens et al., 1996). Parshikov et al. (2000) found 

that Mucor ramannianus can degrade 78% of dosed enrofloxacin (253 µM) in 21 days and 

enrofloxacin metabolites identified were enrofloxacin N–oxide (62%), N-acetylciprofloxacin 

(8%) and desethylene-enrofloxacin (3.5%).  

2.2.4 Human health risks 

 
The effects of pesticides on human health can vary depending on the compounds but in 

general the potential effects  can be carcinogenic, skin or eye irritation and effects on the  

nervous and endocrine system. The risk  of pesticides on human health has been documented 

by EPA (EPA, 2008). Pharmaceuticals, on the other hand,  pose risks to human health by 

developing microbes that are resistant to the pharmaceuticals.  

A major route of exposure of agrochemicals to humans is via consumption of 

contaminated of drinking water. A study on drinking water quality for North Carolina, 

Pennsylvania, Kentucky, Illinios and Indiana showed the presence of two  most common 

herbicides used in agricultural production, atrazine and simazine and the metabolites of 

atrazine: diaminochlorotriazine (CAAT), deisopropyl-atrazine (CEAT), and  deethylatrazine 

(CIAT) at concentrations as high as 26.25 µg L-1 (EPA, 2008).  
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Pharmaceuticals such as sulfamethoxazole, erythromycin-H2O and chloramphenicol 

have been detected in surface waters at concentrations of 0.06-1.70 µg L-1 where 

concentrations of sulfamethazine and sulfamethoxazole can be as high as 0.16 and 0.47 µg L-

1 in ground waters in Germany (Hirsch et al., 1999). Potential effects of drinking water 

contaminated with pharmaceuticals include endocrine system disorders in humans and 

animals and a reduction in the efficiency of antibiotic treatment (Kümmerer, 2004).  

2.2.5 Microbial ecology risks 

 
Pesticides and pharmaceuticals may impact the quality and quantity of soil microbial 

communities when they are bioavailable. Unlike pesticides, not much is known about fate 

and effects of pharmaceuticals in the soils or water bodies. Antibiotics are designed to 

control harmful bacteria in humans or livestock animals, but excretion of unmetabolized 

compounds and their metabolites from livestock can continue to be bioactive in the 

environment (Sarmah et al., 2006). Impacts of these veterinary pharmaceuticals on soil and 

surface water microflora are not fully known and under current intensive study. One potential 

impact of pesticides and veterinary pharmaceuticals is the effect on the microbial activity of 

wood chip bioreactors.  

A variety of pesticides and pharmaceuticals have been reported to inhibit microbial 

activities of several soil microorganisms (Sarmah et al., 2006, Cole, 1976, Moreno et al., 

2007) When semiarid soils were treated with atrazine at concentrations of 0.2 to 1000 mg L-1 

and incubated for 45 days, the amount of CO2-C evolved per unit Cmic per hour was found to 

be significantly higher than atrazine-free control (0.11 C-CO2 g
-1Cmich

-1) in soils treated with 

500 mg L-1 (0.38 C-CO2 g
-1Cmich

-1) and 1000 mg L-1 (0.50 C-CO2 g
-1Cmich

-1) atrazine 

(Moreno et al., 2007). Liu et al. (2009) reported that veterinary antibiotics (sulfamethazine, 

sulfamethoxazole, trimethoprim, tetracycline, chlortetracycline and tylosin) can reduce the 

rate of  microbial respiration of soils at high antibiotic concentrations and are also dependent 

on incubation time. For instance, at the effective concentration (EC 10) for sulfamethazine 

for the application of manure containing sulfonamides was determined to be 13 mg kg-1. A 

sulfonamide, sulfadiazine, was found to reduce by 10 times the nirK and nirS copy number 

of denitrifiers in earth worms’ guts (Kotzerke et al., 2010). Despite the many different 
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studies, there is a lack of fundamental data and information in the literature on the impacts of 

these compounds on denitrifiers.  

In the presence of antibiotics such as sulfonamides, microorganisms may develop 

resistance by replacing inhibited metabolic pathway with a by-pass mechanism and, for 

quinolones, chromosomal mutations and acquisition of genes can lead to alteration of target 

and efflux systems (Acar and Röstel, 2001). In general, resistance to sulfonamides may 

develop by a mutation in the chromosomal dihydropteroic acid synthetase (DHPS), where 

sulfonamides inhibit its synthesis (Acar and Röstel, 2001). The other mechanism is the 

acquisition of sul genes, drug resistance gene for DHPS (Guerra et al., 2004). Sulfanomide 

resistance genes have been isolated from several strains of E. coli and Salmonella spp. 

(Guerra et al., 2004).  A wide range of bacteria species such as Salmonella spp., 

Campylobacter spp., and Escherichia coli, developed resistance to enrofloxacin (Turnidge, 

2004), therefore their usage as human therapeutics have raised concerns of resistant bacteria.  

Soil microorganisms may also benefit from the presence of agrochemicals in their 

surrounding environments due to the inhibition of their natural competitors. An increase in 

soil biomass was observed in 16 days when soil was treated with 0.2-1 mg kg-1 atrazine 

(Moreno et al., 2006). Thiele–Bruhn and Beck (2005) claimed that residual pharmaceutical 

concentrations of sulfapyridine residue at environmental concentrations can apply temporary 

selective pressure on microorganisms causing a reduction in soil bacteria numbers and an 

increase in fungal: bacteria ratio during 14 days of incubation.  

2.3 Summary  

Nitrate  and agrochemicals are detected  in surface waters and subsurface waters, 

mostly due to leaching of the chemicals and their metabolites from agricultural lands. The 

amount of water drained from agricultural lands with artificial systems such as tile drainage 

is typically higher than from lands without tile drainage which to contributes towards nitrate 

pollution of surface waters, especially in the Midwest. To reduce the nitrogen pollution, 

denitrfying bioreactors have been proposed where nitrates are denitrified in the bioreactors 

using the wood chips or saw dust in the bioreactors as a source of organic carbon.  
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In addition to nutrients, agrochemicals and their metabolites may be present in the tile 

drainage which went dispersed into the environment may have human health risks and 

impact on the ecology. The fate of agrichemicals in soils, lagoons, manure and sediments 

have been investigated and documented. Sorption and degradation of atrazine and 

sulfamethazine in soils have been widely studied since their occurence in soils and water 

sources is likely due to the application rates and the nature of the chemicals. Occurence of 

enrofloxacin in the environment is of concern even though it binds strongly to soil particles 

due to various evidences indicating antibiotic resistance development. The fate of monensin 

in the environment has not been investigated thoroughly. 

However, of interest here is the sorption and degradation of  agrochemicals in the wood 

chip bioreactors. Not much work has been done or known about the partition of 

agrochemicals onto wood chips. The physical characteristics of wood chips are different 

from that of soils where macropores may be present in the wood chips. In addition, the 

agrochemicals flowing through the wood chip bioreactors or sorbed onto wood chips may 

have an impact on the denitrification of nitrates. Not much is known about the impact of 

agrochemicals on the denitrfying communities in wood chip bioreactors.  
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CHAPTER  3. SORPTION OF VETERINARY  ANTIBIOTICS  AND A HERBICIDE  

(SULFAMETHAZINE,  ENROFLOXACIN,  MONENSIN  A AND ATRAZINE)  ONTO 

WOOD CHIPS OF A BIOREACTOR 
 

A paper to be submitted to Chemosphere 
 
 
3.1 Abstract 

 
Sorption and desorption of atrazine, enrofloxacin, monensin and sulfamethazine onto 

wood chips from a wood chip bioreactor was studied with batch experiments to evaluate 

retention of agrichemicals on wood chip bioreactors. Based on the Freundlich distribution 

coefficients (Kf), the order of sorption from highest to lowest was enrofloxacin > monensin > 

atrazine > sulfamethazine. Of the four chemicals tested, enrofloxacin desorbed the least while 

monensin desorption was greater than atrazine, sulfamethazine and enrofloxacin. The 

sorption of atrazine and sulfamethazine to wood chips were higher than the sorption of 

surface and subsurface soils obtained next to the wood chips while enrofloxacin and 

monensin sorbed less to wood chips than to the surface soils at depth 5-15 cm. The apparent 

hysteresis index (AHI) value for atrazine was lower than for enrofloxacin and sulfamethazine 

indicating hysteresis was more for atrazine than enrofloxacin and sulfamethazine. Desorption 

hysteresis increased with decreased initial amounts of atrazine and enrofloxacin, while for 

sulfamethazine no trend was observed. Following two consecutive steps of desorption and 

organic solvent extraction, more than 65 % of adsorbed atrazine, 70% of sulfamethazine, 

90% of enrofloxacin and 80% of monensin were retained in wood chips. The results of that 

study showed wood chip biofilters can retain atrazine, sulfamethazine, enrofloxacin and 

monensin and therefore reduce their concentrations in tile water. 

 

Keywords: biofilters, wood chips, atrazine, sulfamethazine, enrofloxacin, monensin, 

sorption, desorption  
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3.2 Introduction  

In the late 19th and early 20th century, much of the wetlands or lands with shallow 

groundwater in Midwest were converted to agricultural lands using tile drainage systems 

(Dahl and Allord, 1997). Although tile drainage has improved agricultural production, it has 

negatively impacted valuable water resources. Many Midwest states suffer from nitrogen and 

phosphorus pollution in surface and ground waters due to heavy use of fertilizers and manure 

which are rapidly conveyed by the tile drainage system to open bodies of water. For example, 

a four-year nitrate monitoring study in Iowa by Cambardella et al. (1999) revealed that 

nitrate-N concentrations in subsurface drainage waters ranged between 6 and 9 mg L-1 for 

three quarters of the annual monitoring period but exceeded 10 mg L-1 for the rest of the 

period.  

Various management strategies have been applied to reduce nitrate in surface and 

ground waters. One of the approaches to reduce nitrate concentration in drainage water is to 

build a ‘denitrification wall’ where nitrate in water is reduced by denitrifiers. Robertson and 

Cherry (1995) monitored nitrate removal from ground water with a 0.6 m wide denitrification 

wall consisting of an 80/20 (vol/vol) mixture of soil and sawdust or wood chips and found 

that NO3
--N concentrations were reduced from 57-62 mg L-1 to 2-25 mg L-1. Schipper  and 

Vojvodi -Vukovi , (1998) constructed a 35-m long, 1.5-m deep and 1.5-m wide 

denitrification wall consisting of soil and saw-dust (30% vol/vol) and treated groundwater for 

a year. They reduced NO3
--N from 5-16 mg L-1 to below 2 mg L-1. Removal of nitrate by 

wood chips was attributed to a denitrification process rather than immobilization of NO3
--N; 

with the wood chips providing the organic carbon for the denitrification process (Greenan et 

al., 2009).  

In addition to fertilizers, other chemicals applied to the fields may also leach into the 

subsurface drainage water and pollute surface and subsurface waters. These chemicals 

include herbicides and insecticides, antibiotics and estrogens in manure. At many sites, 

groundwater or tile water around agricultural lands may be contaminated by multiple 

contaminants. For example, Kalita et al. (2006) monitored both atrazine and NO3
--N 

concentrations in a watershed at four different locations in east central Illinois from 1991 to 

2003 range from 0.87 to 1.22 µg L-1and 15-20 mg L-1, respectively. Atrazine concentrations 
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in tile drainage water was found to range from 1.3 to 5.1 µg L–1 by Jayachandran et al. 

(1994), which were close to atrazine concentrations detected (3 µg L–1 and 10 µg L–1) in 

surface runoffs of Midwest states (Battaglin et al., 2003). Drain tiles may speed the 

movement of pesticides and veterinary antibiotics into surface waters. Besides pesticides, 

antibiotics present in manure such as sulfonamides, fluoroquinolones and ionophores have 

been found in groundwater and surface waters (Boxall et al., 2003). 

Wood chips used in denitrification walls or wood-chip bioreactors can act as a 

potential sorbent for various pollutants including pesticides and veterinary antibiotics. 

Boudesocque et al. (2008) found that sorption of terbumeton, desethyl terbumeton, 

dimetomorph and isoproturon by wood components and lignocellulosic materials was a fast 

process where less than four hours was required to reach steady state, and the amount of 

pesticides adsorbed varied between 1-8 µg g-1 of wood chip. Bras et al. (1999) found about 

97% of heptachlor, aldrin, endrin, dieldrin, DDD, DDT and DDE were sorbed when 1 to 10 

µg L–1 solutions of the pesticides were exposed to pine bark. Rodriguez-Cruz et al. (2009) 

investigated sorption of ionic and non-ionic pesticides onto hydrophilic (cellulose) and 

hydrophobic (lignin) wood components. The Kf for linuron ranged from 121 to 165 L kg-1 for 

lignin and 2.22 L kg-1 for cellulose indicating cellulose, and lignin content of wood residues 

affect its sorption potential. Sharma et al. (2008) found that about 74.7 to 80.5% of atrazine 

were removed by sorption onto sawdust (42.3% C) which was treated with 0.1 N H2SO4 and 

kept at 200 C° for 4 hours. There are no studies on the sorption of antibiotics onto wood, but 

there are previous reports on the sorption of these pharmaceuticals onto soil particles.  

Enrofloxacin, a fluoroquinolone carboxylic acid derivative was strongly sorb to 

various soil types with linear sorption coefficients (Kd) ranging between 260 and 5612 L kg -1 

(Nowara et al., 1997). On the other hand, sulfamethazine, a sulfanomide was found to be 

mobile in the soil due to its weak sorption (0.9-1.8 L kg-1) onto soil particles (Boxall et al., 

2002). For the same approximate pH, sulfamethazine sorption on to soils was reported to 

increase with higher organic carbon contents (Lertpaitoonpan et al., 2009). Likewise, 

sorption of atrazine, a typical co-contaminant with nitrate, onto soil was proportional to soil 

organic carbon (Moorman et al., 2001). Monensin, an ionophore and growth promoter sorbed 
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to soils with organic carbon sorption coefficients (Koc) ranging from 2.1 and 3.8 (Sassman 

and Lee, 2007).  

Pesticide and veterinary antibiotics contamination of ground and surface waters are of 

great concern due to their potential impacts on both aquatic and terrestrial ecosystems 

(Garner et al., 1986, Halling-Sørensen et al., 1998, Kolpin et al., 2002) and microbial 

resistance development (Teuber, 2001). There are currently very few studies on the fate of 

pesticides and veterinary antibiotics in wood chip bioreactors or denitrification walls. The 

primary objective of this study was to investigate the sorption and desorption of herbicides 

and veterinary antibiotics onto wood chips of denitrifying in situ bioreactor designed to treat 

nitrate in tile water.  For the study, atrazine, sulfamethazine, enrofloxacin and monensin were 

selected as representative chemicals of the main groupings of compounds: triazines, 

sulfonamides, fluoroquinolones, and ionophores, respectively. Sorption studies using soils 

sampled from same field as the wood chip bioreactor were conducted as a comparison with 

the sorption results for wood chips. The effect of wood chips particle sizes on atrazine 

sorption was also evaluated.   

 

3.3 Materials and Methods  

3.3.1 Chemicals 

Enrofloxacin (CAS number: 93106- 60- 6, 99% purity), monensin sodium salt (CAS 

Number: 22373-78- 0, 99% purity), sulfamethazine (4-amino-N-(4, 6-dimethyl-2-

pyrimidinyl)-benzenesulfonamide, CAS number: 57-68-1, 99% purity) were purchased from 

Sigma–Aldrich (St. Louis, MO) while atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-

triazine), (CAS number: 1912- 24- 9 , 99% purity) was purchased from Chem Service (West 

Chester, PA). Selected physical and chemical properties of the four compounds are presented 

in Table 1. Stock solutions of enrofloxacin (1000 mg L-1) and atrazine (1000 mg L-1) were 

prepared in analytical grade acetonitrile. Monensin sodium salt stock solution of 100 mg L-1 

was prepared in analytical grade methanol, and a sulfamethazine stock solution of 100 mg L-1 

was prepared in high performance liquid chromatography (HPLC) grade water. All standards 

for HPLC and liquid chromatography mass spectrometry (LC-MS) calibration curves were 

prepared by diluting stock solutions into 10 mM CaCl2 and were stored at 4 °C under dark 

conditions. 
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3.3.2 Stability of monensin A 

The stability of monensin was studied  using 1 mg L-1 of monensin sodium salt in 

MilliQ (purified and deionized) water, 10 mM CaCl2, 500 mg L-1 KNO3 and a mixture of 10 

mM CaCl2 and 500 mg L-1 KNO3, at 4°C and 22°C. The stability tests were conducted in 20-

mL glass tubes with 10 mL of the above solutions. The samples were mixed for 48 hours. 

Two mL of solution was removed with a syringe from each tube and analyzed for monensin 

A sodium salt using LC-MS. Separate calibration curves were prepared for monensin for the 

above four solution matrices. The stability of monensin sodium salt A in the four solution 

matrices at two different temperatures, represented by % recovery, is presented in Table 2.  

Percent recoveries after two days of incubation ranged between 84 and 111 % depending on 

the temperature and the solution matrix.  

In addition to monensin stability tests in the above matrixes, sodium azide (NaN3) 

interference with monensin analysis was evaluated for a 1-mg L-1 monensin solution treated 

with 5000 mg L-1 of NaN3 prepared in MilliQ water. The presence of NaN3 interfered with 

LC- MS signal, and monensin could not be detected. As a result monensin sorption 

experiments were performed in 10 mM CaCl2 at 22±1°C for 48 hours with a recovery rate of 

99 %.  

3.3.3 Sorbents 

 
Wood chips were collected in 2004 at a depth of 170 cm from a denitrifying reactor 

located at Iowa State University agricultural research farm in Ames, Iowa. Denitrification 

walls were placed ten years ago on both sides of drainage tiles in a field cropped with corn 

and soybean (Jaynes et al., 2008). The wood chips used for the denitrification wall were 

mainly oak (Quercus sp.) containing 46.54% organic C and 0.15% N. Over the 10 years, the 

field was not treated with manure and pesticides. Wood chips with a length or width larger 

than 5 cm were mechanically chopped with a blender to a size of less than 2 cm in width or 

length. The wood chips were air dried and kept in a sealed bag at 4°C until they were used.  

Besides the wood chips, soils samples were collected from the same site at 5-15cm, 

80cm, and 168 cm depth.  The soil samples from each depth were sieved through a 2-mm 

sieve, mixed, air dried and stored in plastic bags at 4 °C until they were used. Selected 

physical and chemical properties of the soil samples are presented in Table 3.   
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3.3.4 Sorption and desorption of chemicals onto woodchips and soils 

 
Single-point sorption experiments of the selected chemicals onto wood chips and 

soils was performed in order to compare sorption behavior of selected chemicals onto wood 

chips with soils before sorption-desorption isotherms were generated. The study was repeated 

two times in triplicate and the results averaged for atrazine, monensin and sulfamethazine. 

For the initial trial, the concentration of enrofloxacin in the aqueous phase after 48 hours of 

mixing was below detection limit (<0.005 mg L-1), therefore only the result of the second 

trial for enrofloxacin (was also performed in triplicate) was evaluated.  The solid-to-liquid 

ratio was adjusted for the second trial. Single point sorption experiments were conducted in 

30 mL fluorinated ethylene propylene (FEP) tubes (Nalgene, Oak Ridge). In each tube, one g 

of  wood chips were added along with 10 mL of 10 mM CaCl2 containing 0.94 mg L-1, 0.79 

mg L-1, and 0.83 mg L-1 of atrazine, monensin A sodium salt or sulfamethazine, respectively.  

For the enrofloxacin experiment, only 0.5 g of wood chips was used and the initial aqueous 

concentration was 0.96 mg L-1. Wood chips in each tube were soaked in 10 mM CaCl2 for 48 

hours and then drained before the chemical was added. This step is required to saturate the 

wood chips to reduce its effect on sorption equilibrium time. Sorption experiments with 

atrazine, enrofloxacin and sulfamethazine also contained 5000 mg L-1 of NaN3 to inhibit 

microbial growth. Sorption experiments with monensin were prepared in 10 mM CaCl2 

solution only. The contents of the tubes were gently mixed for 48 hours in a reciprocating 

shaker and then centrifuged at 6574 x g for 20 minutes. Two mL of the supernatant were 

removed and filtered through 2-µm Whatman glass fiber filters for HPLC analysis.  

Similar single-point sorption experiments were conducted using the soil samples. 

Three grams of soils (1 g of soil for enrofloxacin treatment) were placed into the 30-mL FEP 

tubes along with 10 mL of 10 mM CaCl2 solution with 1 mg L-1atrazine, enrofloxacin or 

sulfamethazine. The tubes were mixed in a reciprocating shaker for 48 hours and then 

centrifuged at 6574 x g for 20 minutes. Two mL of the supernatant were removed and 

filtered through 2-µm Whatman glass fiber filters for HPLC analysis. 

Sorption and desorption isotherm experiments were conducted in a similar manner as 

the single point sorption experiments. For each sorption isotherm experiment, a total of 6 
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amber 30-mL vials were used with 1-2 g of wood chips. Wood chips were soaked in 10 mM 

CaCl2 for 168 hours and then drained prior to addition of chemical for the sorption 

experiment. The initial concentrations in the vials ranged from 0.5 to 8.0 mg L-1. For each 

concentration, triplicate vials were prepared.  The experiments were conducted at 22±1°C. 

After equilibration, 2 mL of the supernatant were removed, filtered, and analyzed using the 

HPLC. For  the desorption experiments, a further 6 mL of the supernatant was removed from 

the tube and 8mL of fresh 10 mM CaCl2 solution added. The contents were mixed for 48 

hours and then centrifuged. Two mL of supernatant were removed and filtered for HPLC 

analysis. The desorption procedure was then repeated. 

Solid-phase concentrations (mg kg-1) were calculated based on the difference between 

initial aqueous phase amount (weight) and equilibrium aqueous phase amount (weight) of the 

chemical. Sorption-desorption isotherms were determined by linear regression and fitting the 

data to Freundlich equation using SigmaPlot 10 Software (San Jose, CA). Partition 

coefficient (Kd) and distribution coefficient (Kf) were calculated using equation 1 and 2, 

respectively,  

 Cs = Kd x Cw        (1) 

 Cs = Kf x Cw
n ,      (2)  

where Cs  and Cw  are solid phase and aqueous phase concentrations of  analyte at 

equilibrium, respectively  and n is Freundlich linearity parameter.  

3.3.5 Wood chip particle size sorption experiments for atrazine 

An experiment was conducted to assess the effect of wood chip particle size on 

atrazine sorption.  The wood chips were separated into 3 different sizes using 4 mm, 2 mm 

and 150 µm sieves. An additional test size was attained by mixing equal amounts by weight 

of the three sizes. Two grams of woodchips from each group were placed in 30 mL FEP 

tubes along with 10 mL of 1.75 mg L-1atrazine in 10 mM CaCl2 solution after wood chips 

were soaked in 10 mM CaCl2 for 168 hours. The tubes were mixed for 48 hours on a 

reciprocal shaker at 22±1°C. Three mL of supernatant was drawn from each tube and filtered 

through a 2-µm Whatman glass fiber filter. The filtered supernatant was then analyzed with a 

HPLC. The linear sorption coefficients (Kd) were calculated based on mass sorbed and the 

equilibrium concentrations in the aqueous phases.  
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3.3.6 Extraction of chemicals from wood chips 

 
Following the desorption tests, the solutions in the tubes were drained and 8 mL of 

4:1 (v/v) mixture of acetonitrile–MilliQ water were added to the wood chips in the tubes to 

extract atrazine, sulfamethazine or monensin. The extraction pH was 6.3±0.7 for atrazine, 

6.9±0.3 for sulfamethazine and 6.8±0.4 for monensin. Extraction solvent for enrofloxacin 

was prepared in a similar manner to Nowara et al. (1997). Eight mL of 100% methanol 

(MeOH), ammonium acetate (10 mM) and MilliQ water in a ratio of 1:1:1 (v:v:v) was added 

to the wood chips. The extraction pH was 6.3±0.9. The tubes were mixed for one hour with a 

reciprocating shaker and then equilibrated for 24 hours. The tubes were centrifuged at 6586 x 

g for 20 minutes and the supernatant in the tubes was poured out and collected. The wood 

chips were then extracted a second time using the same volume of the mix solution. The 

acetonitrile of the combined volume (16 mL) of acetonitrile-water mixture was then 

evaporated using nitrogen gas in an analytical evaporator. The remaining solution was then 

cleaned and concentrated using Waters OASIS HLB cartridges. The sample was percolated 

through the cartridge at around 0.5 mL min-1 and the flow rate for the conditioning or 

washing solution was 0.1 mL min -1.  

To prepare the supernatant for atrazine analysis, the manufacturers’ instructions were 

followed with a few modifications. The HLB cartridges were conditioned with 3 mL of 100 

% MeOH followed by 3 mL of MilliQ water. The cartridges were then loaded with the 

concentrated solution, and the cartridges washed with 3 mL of 5% MeOH followed by 

elution with 3 mL MeOH. Elutes were mixed with 3 mL of MilliQ water and the MeOH 

evaporated and the final volume was brought to 3 mL before the eluent was analyzed with 

HPLC.  

For sulfamethazine, the extraction followed the procedure developed by Henderson 

(2008). The cartridges were conditioned with 3 mL of 100% MeOH followed by 3 mL of 0.5 

N HCl. The HLB cartridges were loaded with the concentrated extracts and then washed 

using 3 mL of MilliQ water. Elution was completed with 3 mL of methanol. The MeOH in 

the eluent was evaporated and 3 mL of MilliQ water added before HPLC analysis.  
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A method established by Gölet et al. (2001) for enrofloxacin extraction with mixed 

phase cation exchange disk cartridges was modified for enrofloxacin extraction using SPE-

HLB cartridges.  The cartridge was conditioned (3 mL of 100% MeOH and 3 mL of MilliQ 

and 0.5 N HCl at pH 3) before the samples were loaded, and the cartridges were vacuum 

dried for 5 minutes. Compound was eluted with 2.5 mL of 5% ammonium hydroxide in 

100% MeOH. The eluent was neutralized by adding 0.5 mL of 50 mM H3PO4 solution. 

The method developed by Watanabe et al. (2008), was used with minor modifications 

for monensin extraction. The cartridges were conditioned with 6 mL of MeOH followed by 6 

mL of 0.5 N HCl, and 6 mL of MilliQ water. After the extracts were loaded through the 

cartridges, the cartridges were washed with 6 mL of MilliQ water loaded with 60 µL of 1.0 

mg L-1 simeton as an internal standard. The cartridges were then eluted with 5 mL of MeOH. 

The MeOH in the extracts were evaporated and the volumes brought back to a volume of 1.2 

mL by adding 500 µL of MeOH and 700 µL of MilliQ water. The extracts were then 

analyzed immediately with LC-MS.  

 
3.3.7 Chemical analysis 

 
Atrazine, enrofloxacin and sulfamethazine were analyzed using an Agilent HPLC 

Series 1100 (Eagan, MN) with diode array and fluorescence detection. The HPLC eluent 

flow rate was set at 0.5 mL min-1 for atrazine and enrofloxacin analyses with the following 

solvents and times: 3 min with 10% acetonitrile and 90% HPLC grade water (4% glacial 

acetic acid and 1 mM ammonium acetate) followed by 70% acetonitrile and 30% water for 9 

minutes and 10% acetonitrile and 90% water for the last 3 minutes. Retention times for 

atrazine and enrofloxacin were 12.1 and 8.1 minutes, respectively. The eluent flow rate for 

sulfamethazine was at 0.3 mL min-1 with 25% acetonitrile and 75% water for 8 minutes, 

increasing the acetonitrile to 45% for the next three minutes, followed by 100% acetonitrile 

for 2 minutes and finally the acetonitrile reduced to 10% for last 5 minutes. Injection 

volumes were 20 µL for enrofloxacin, 30 µL for atrazine and 50 µL for sulfamethazine. 

Detection wavelengths for atrazine and sulfamethazine were 254 nm while the wavelength 

for enrofloxacin was 278 nm. Excitation and emission for enrofloxacin analysis were 278 and 

445, respectively. HPLC column temperature was set at 60 °C for atrazine and enrofloxacin, 
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and 40 °C for sulfamethazine. Quantification was performed using external standards. 

Recoveries exceeded 99%.  

Monensin was analyzed with a LC-MS equipped with SBC-18 Zorbax, Agilent 

column (part 830990-02 2.1 x 150 mm with 3.5-µm particle size) based on the method 

developed by Watanabe et al. (2008) with modifications. A gradient method was followed 

where simeton was used as an internal standard and injection volume was set at 5 µL. The 

gradient ramp used was; 30% HPLC grade water (5% acetonitrile and 0.1% formic acid) and 

70% acetonitrile for 5 minutes followed by 5% water and 95% acetonitrile for 12.5 minutes 

and 30% water and 70% acetonitrile for 2 minutes. Quantification was based on external 

standards using the monensin sodium adduct.  

 
3.4 Results and Discussion 

 
3.4.1 Single point sorption study-wood chips and soils 

 
Single-point partition coefficients estimated for the sorption of atrazine, enrofloxacin, 

monensin and sulfamethazine onto wood chips and soils for the batch sorption experiments 

are summarized in Table 4. The initial aqueous phase atrazine concentration in the single-

point sorption experiment with wood chips was 1 mg L-1 which was two orders of magnitude 

higher than the concentrations found in tile drainage water in Canada (13.9µg L-1) 

(Lakshminarayana et al., 1992). Atrazine partition coefficient, Kd, for wood chips was 24.1 L 

kg-1 while the organic carbon-normalized distribution coefficient, Koc, was 49.2 L kg-1. Koc’s 

estimated for atrazine onto various organic plant residues (dewaxed cuticle, nonsaponifiable 

residue, nonhydrolyzable residue) with organic carbon contents ranging from 42.55 to 

61.99% were between 44.1 and 644.0 L kg-1 (Chefetz et al., 2003) which was higher than the 

wood chip Koc in this study. Kd values for soils ranged between 0.8 and 4.2 kg L -1 and were 

within the same range of partition coefficients reported by Moorman et al. (2001) ranging 

between 5.8-0.4 L kg-1for soils with organic carbon contents of 2.54-0.08% . Atrazine Kd, for 

wood chips were about one order of magnitude larger than that for soils samples from the 3 

depths. Atrazine Koc values for wood chips were found to be much lower than the Koc values 

for the soils at three depths. Ling et al. (2008) observed a positive correlation between Kd and 
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soil organic matter content and higher Koc values for soils with less organic carbon content, 

and they suggested that the soil organic carbon content is not the only factor influencing 

sorption of atrazine onto soils. On the other hand, Mackay and Gschwend (2000) suggested 

that for wood particles, values are poorly correlated to the organic C of the wood. Therefore, 

it is more accurate to use Kd values when comparing sorption of hydrophobic compounds 

onto wood chips and soils.  

 Similar to the atrazine sorption results, Kd of sulfamethazine for wood chips was 

about one order of magnitude larger than the Kd for the three soils at pH 6.1±0.4 (Table 4). 

Lertpaitoonpan (2009) suggested that partitioning of sulfamethazine below pH 7.4 (pKa2 for 

sulfamethazine) may be due to hydrophobic sorption since sulfamethazine was in the 

unionized form. The Kd values for the soils in this study were similar to that of Boxall et al. 

(2002) and Lertpaitoonpan et al. (2009) who reported Kd values between 0.9-1.8 L kg-1 and 

0.6-2.8 L kg-1, respectively. The Koc value for sulfamethazine for wood chips was 

comparable to the Koc for the surface soils from depth 0-15 cm.    

Partition coefficients of enrofloxacin for wood chips were 281.9 L kg-1 (Kd) and 

570.9 L kg-1 (Koc). In comparison to other fluoroquinolones, enrofloxacin is the most 

lipophilic compound and its movement from water phase to solid phase occurs fairly rapid 

(Picó and Andreu, 2007). In addition, formation of cation bridges in soil is another likely 

mechanism to explain enrofloxacin sorption on to soils (Tolls, 2001). Boxall et al. (2006) 

reported Koc values of 15,800 L kg-1 for enrofloxacin which is about 31 times larger than Koc 

calculated for wood chips.  

Enrofloxacin partition coefficients for soils at 15 cm, 80 cm and 168 cm depth ranged 

from 1357-2746 L kg-1, which is within the range of Kd values found in the literature. For 

loamy sand with 2.27 % organic carbon content, the Kd was reported to be 970 L kg-1, which 

was higher than for sandy soil (0.59 % OC) and sandy loam(1.24 OC %) (Ötker-Uslu et. al, 

2008). For clay minerals, the Kd was between 260 and 5610 L kg-1 (Nowara et al., 1997). 

Sorption of enrofloxacin onto surface soils was found to be higher than that of wood chips 

with partition coefficients for wood chips about one order of magnitude smaller than that for 

surface soils (0-15 cm) However, Rodriguez et al., (2007) stated that there was no correlation 

between total carbon content of wood residues and Freundlich partition coefficients (Kf) of 
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ionic and non-ionic pesticides. It is probable that, sorption to the clay content and ionic 

interactions can be the major mechanism of enrofloxacin sorption. Additionally, solid 

(sorbent) to liquid (aqueous phase) ratio should be taken into account as the solid to liquid 

ratio for the wood chips experiments were about 2 times smaller than that for soils.  

Monensin A sodium salt partition coefficients for wood chips was 24.1 L kg -1 (Kd) 

and 49.1 L kg-1 (Koc). The environmental fate of monensin is poorly understood (Dolliver et 

al., 2007); especially its sorption behavior. Carslon and Mabury (2006) suggested that 

monensin is immobile in soils, despite the fact, that ionophores are highly lipophilic (Hansen 

et al., 2009). Monensin was found to sorb more strongly to subsurface soils than surface soils 

and wood chips (See Table 4). Sassman and Lee (2007) reported monensin organic carbon 

normalized partition coefficients (Log Koc) as 2.1 to 3.8, which corresponds to 125.8 to 6309 

L kg-1and higher than the Koc calculated for monensin in this study. They also reported 

reducing pH of the soil from 6.2 to 4.9 increased Kd from 6.6 to 19.3 L kg-1 which is likely 

below the pKa of monensin. However, in this study the lowest Kd of monensin was found for 

the soil with the lowest pH.  

In summary batch linear sorption results indicated that atrazine and sulfamethazine 

were sorbed more strongly to wood chips than soils. Enrofloxacin sorbed 3 orders of 

magnitude less onto woodchips than soils even though enrofloxacin partition coefficient was 

one order of magnitude larger than partition coefficients of atrazine and sulfamethazine for 

wood chips. Monensin A sodium salt appeared to sorb less onto wood chips than subsurface 

soil, but the partition coefficient of monensin was in the same range as the partition 

coefficient of atrazine for wood chips. 

 
3.4.2 Sorption and desorption experiments  

 
Sorption-desorption isotherms for all four chemicals are shown in Figure 1. The 

Freundlich distribution coefficients, Kf, and linearity constants, n, along with their 95% 

confidence intervals for sorption and desorption of atrazine, sulfamethazine, enrofloxacin and 

monensin onto wood chips were determined by non–linear regression analysis using the 

SigmaPlot 10.0 software (Systat Software Inc., San Jose, CA). Results of the non-linear 

regression analysis are presented in Table 5. The Freundlich equation gave a better fit of the 



www.manaraa.com

 
 

 

44

 

wood chip sorption data with n values less than 0.85 as compared to the linear isotherm 

equation. According to Pignatello et al. (2006), n constants for Freundlich isotherms in the 

range of 0.95 and 1.05 are presumed to be linear isotherms.  

The Kd values estimated from the isotherms were significantly different than the Kd 

values calculated from single-point sorption experiments (See Table 4). The wood chip-

chemical solution pH, equilibration time, solid-to-liquid ratio were similar for both 

experiments. However, some of the major differences in the two experiments were the size of 

wood chips and saturation time of wood chips prior to the equilibration. For the single-point 

sorption experiments, size of wood chip particles were larger (> 0.5 x 0.5 x 0.5 cm) while a 

more homogeneous wood chip mixture was used for isotherm study. For the single-point 

experiments, wood chips in tubes were soaked in 10 mM CaCl2 for 48 hours, whereas for the 

isotherm study they were soaked in the same solution for 168 hours. Mackay and Gschwend 

(2000) indicated that uptake of sorbate by wood residues may be slower if the wood particles 

are not fully saturated. It is possible that 48 hours of pre-treatment soaking of wood chips 

may not be enough for water to penetrate through wood particles which may reduce 

magnitude of sorption. 

The atrazine distribution coefficient (Kf) for this study was similar to the sorption of 

atrazine onto plant residues (cuticle) with Kf of 120.8-137.37 L kg-1 (Chefetz et al., 2003), 

but was much higher than sorption onto sugarcane mulch with Kf and Kd of 20.3 L kg-1 and 

17.22 L kg-1, respectively (Selim and Zhu, 2005). However Kf for atrazine sorption onto 

wood chips in this study was lower than Kf estimated by Boudesocque et al (2008) for 

terbumeton sorption onto lignocellulosic material (1090 L kg-1). Sorption of linuron, alachlor 

and metalaxyl onto cellulose ranged between 1.36 and 9.15 L kg-1 (Rodriguez-Cruz et al., 

2009) which were lower than Kf estimated for atrazine onto wood chips in this present study.  

The Kf and Kd values for wood chips were also comparable with Kf and Kd of 44.3 L kg-1 and 

43.1 L kg-1 for soil with 38.3% organic carbon (Park et al., 2004). Atrazine distribution 

coefficients on soils with conventional and no-till agricultural management systems were 3.7 

and 3.8 L kg-1 (Prata et al., 2003) which were lower than sorption coefficients for woodchips 

(65.8 L kg-1). Aromatic carbon and carboxylic acid unit content of the material play a 

significant role in atrazine binding onto organic materials where aromatic carbon content 



www.manaraa.com

 
 

 

45

 

increases hydrophobic interactions in atrazine binding and carboxylic acids enhances 

hydrogen bonding between atrazine and organic matter (Lima et al., 2010). Therefore, strong 

binding of atrazine onto woodchips can be attributed to abundance of carboxylic units and 

aromatic groups in wood chips. Strong binding can retain atrazine to wood chips and reduce 

its transport into tile water.   

The estimated Freundlich distribution coefficient (Kf) and the partition coefficient, 

Kd, of sulfamethazine were of similar values (see Table 5). Sulfonamide sorption to organic 

matter is also related to presence of phenolic and carboxylic groups, N-heterocyclic 

compounds and lignin decomposition products (Thiele-Bruhn et al., 2004). They also 

suggested sulfonamide would be binding onto organic matter (soil) via hydrogen bonds and 

van der Waals interactions. Sulfamethazine adsorbed the least in comparison to other 

chemicals tested. Sulfamethazine has the highest water solubility (1500 mg L-1) which 

reflects the ionic nature of the compound and may explain the lower Kf value compared to 

the other three compounds.  

The enrofloxacin Freundlich distribution coefficient was 232.4 L kg-1 and the 

partition coefficient was 372.1 L kg-1. Based on its lipophilic property it was expected that 

enrofloxacin sorbed more onto wood chips than atrazine and sulfamethazine. Monensin A 

distribution coefficients were in the same range with enrofloxacin which was expected due to 

its low water solubility and large molecular size. Sorption isotherm study indicates chemicals 

with different molecular sizes, and chemical properties partition differently onto woodchips. 

Lignin (hydrophobic) and cellulose (polar) content of the wood also control sorption of 

hydrophobic compounds onto wood (Mackay and Gschwend, 2000). They also suggested 

normalization of sorption parameters based on organic carbon content of the material is a 

poor estimate for wood which is commonly used for soils. Soil organic matter (SOM) and 

wood chips are chemically different where C content of wood is less stable than of soils. 

However, the overall sorption results indicate that wood chips are good sorbents to retain 

agrichemicals and wood chips can reduce agrichemical concentrations in tile water.  

 Desorption isotherms for atrazine, enrofloxacin, and sulfamethazine after two 

desorption steps are shown in Figure 1 (a), (b) and (c), respectively. The desorption results 

indicate that the three compounds did not desorb readily which are reflected by the increase 
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Kfdes1 and Kfdes2 values after each desorption step. The lack of desorption indicates the lack of 

mobility and bioavailability of the compounds (Wu et al., 2009) in the wood chip bioreactor 

which, in turn, may affect their degradation. 

Desorption behavior of monensin was different from desorption behavior of the other 

three compounds where a lower Kfdes1 value was obtained as compared to the Kf value. 

However, the Kfdes2 value was statistically similar to that of Kf. This lower Kfdes1 value shows 

the binding of monensin to wood chips may be due to external surface binding. Monensin is 

a larger molecule than the other three molecules tested and the penetration of the molecule 

into the micropores and the wood fibers may be limited. As such, for the first desorption, 

about 12% of sorbed monensin was desorbed readily.  

To assess the extent of desorption, the desorption apparent hysteresis index (AHI), 

defined as the ratio of ndes/nsorp may be estimated for each compound (Huang et al., 1998) and 

are presented in Table 6. The ndes in the AHI were estimated differently from ndes1 and ndes2 

values in Table 5. The ndes was estimated by using the Freundlich equation, but the data used 

were sorption, first and second desorption data for each initial concentration. AHI values 

indicate the degree of difficulty to desorb a chemical from a matrix (Drori et al., 2005, 

Chefetz et al., 2004). In general, higher AHI values were observed for atrazine, and 

enrofloxacin, which ranged from 0.043 to 0.073, 0.064-0.179, respectively (Table 6). For 

sulfamethazine, AHI values ranged between 0.05 and 0.169, and a different trend was 

observed. For enrofloxacin, the trend between initial concentration and AHI values was 

found to be linear (R2 = 0.95), whereas for sulfamethazine and atrazine the initial 

concentration and AHI values were not related with R2 of 0.0615 and 0.0623, respectively. 

Unlike enrofloxacin and atrazine, the AHI values decreased at higher solute concentrations 

for sulfamethazine. This can be explained by gradient phenomenon suggested by Chefetz et 

al. (2004). At higher solute concentrations, sulfamethazine may be forced to move into 

micropores of wood chips and penetrate through the deepest sites where it cannot desorb 

easily. 

 Hysteresis was well documented for atrazine sorption-desorption onto various soils 

or organic residues Lima et al. (2010), Bhandari and Lesan, (2003), Chefetz et al. (2004) but, 

there is a lack of information on  hysteresis of sulfamethazine, enrofloxacin and monensin 
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from soil matrices or from wood. However, Drillia et al. (2005) and Sukul et al. (2008) 

observed sorption-desorption hysteresis for ofloxacin and sulfadiazine, respectively in soil.  

 
3.4.3 Effect of wood chips particle size on atrazine sorption 

 
Single-point partition coefficients for atrazine and each wood chip particle size with 

and without NaN3, are presented in Table 7. The Kd values increase with decreasing wood 

chip particle size. Atrazine Kd value for wood chips smaller than 2 mm x 2 mm (128.8 L kg-1 

) was significantly higher than the Kd for wood chips larger than 4 mm x 4 mm (64.1 L kg-1) 

(F = 3.63, P<0.05). Mackay and Gschwend (2000) compared sorption of toluene onto wood 

sticks (1 x 0.16 x 0.16 cm), shavings and chips (1 x 2 x 0.16 cm) and concluded time 

required to reach steady state was higher for chips (~2000 min) and sticks than for shavings 

(~10 min). But for an exposure time of 33 hours the exhibited Kd’s for all wood sizes were 

similar, ranging from 11 to 13 L kg-1 (Mackay and Gschwend, 2000). The presence of NaN3 

(5,000 mg L-1) did not interfere with the sorption of atrazine onto wood chips. The Kd for the 

mixture of the three sizes was similar to the smallest particle size fraction between 150 µm 

and 2 mm.  This may be due to larger surface area provided by the smaller size particle 

which may control the sorption.  

 
3.4.4 Extraction of adsorbed chemicals from wood chips  

 
Recovery of the chemicals after adsorption and the two desorption steps are presented 

in Figure 3.  Solvent extraction was performed to determine the unextractable fractions of the 

chemicals. The amount extracted from wood chips after desorption steps ranged from 12.2-

21.3% for atrazine, 10.6-15.4% for sulfamethazine, 0.05-2.4% for enrofloxacin, and 0.1- 

0.8% for monensin. These values equate to a total of 75% of atrazine, 77% of 

sulfamethazine, 95% of enrofloxacin and 86% of monensin that adsorbed onto wood chips 

but were not extracted through the four consecutive extractions of two water desorption steps 

and two organic solvent extractions. In comparison, extraction of atrazine from sugarcane 

mulch with 100% MeOH resulted in a recovery of 5.49% (Selim and Zhu, 2005) which is 

lower than the extractable percentage of atrazine from wood chips in this study. However, 

total incubation time should be taken into account in evaluating the extractable portions of 
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the chemicals. Lesan and Bhandari (2003) reported the amount of atrazine recovered with 

water extraction (Log Kfd = 0.516) within one hour of exposure was significantly different 

than atrazine extracted at after 84 days of exposure (Log Kfd = 0.965). For this study, 

chemicals were extracted on the 8 days after addition.   

 
3.5 Conclusion 

 
Dissociation constant indexes (Kd), and (Koc) for  atrazine and sulfamethazine 

adsorbed to wood chips as the sorbents were found to be higher than that for soils from 3 

different depths from the same site as the in situ wood chip bioreactor, indicating  that both 

chemicals have a strong tendency to be sorbed onto wood chips of denitrification walls.  On 

the other hand, partition coefficients of enrofloxacin for soils were found to be about 3 orders 

of magnitude larger than the wood chips. The higher sorption of chemicals by wood chips as 

compared to soils may be attributed to higher organic C content and the available macro and 

micropores of the wood chips. Sorption isotherms indicated that sorption of sulfamethazine 

onto wood chips was less than the other three chemicals, possibly due to its high water 

solubility. Desorption hysteresis was observed for sulfamethazine, and enrofloxacin, 

indicating that desorption increased with higher initial concentrations. The estimated AHI 

indicated that chemicals readily desorbed more at higher initial concentrations compared to 

lower initial concentrations. After two water desorptions and two solvent extractions of the 

66-80% of the adsorbed atrazine, 77-79% of sulfamethazine, 92-96% of enrofloxacin and 83-

91% of monensin were retained in wood chips. The results indicate that wood chip 

bioreactors can reduce the concentrations of atrazine, sulfamethazine, enrofloxacin or 

monensin present in tile water.  
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Table 1. Selected physical chemical properties of atrazine, enrofloxacin, sulfamethazine 
and monensin. 

Common Name 

& Chemical 

Formula 

Chemical structure Molecular 

weight (mg 

mol-1 )  

Water 

solubility 

(mg L-1) 

pKa 

 

 

Atrazine 

C8H14ClN5 

 

N

N

N

Cl

NHNH

CH3

CH3
CH3

 
215.69 28 1.7 

 

 

Enrofloxacin 

C19H22FN3O3 

 

N

O

F

N

N

CH3

O

OH

 
359.40 10.4a 6.27b, 8.3c  

 

 

Sulfamethazine 

C12H14N4O2S 

 

N

N

NH2

S

O

O

NH

CH3

CH

 
278.33 1500 2.65d, 7.65e  

 

 

Monensin Sodium 

Salt A 

C36H61NaO11 

 

O
O

O
O

HO

H3C

CH3

H3CO

HOOC CH3

O

CH3

CH3

HO CH2OH

H3C

CH3

H3CH2C

Monensin A

 

692.9 4.8-8.9 10.30f 

(aLizondo et al., 1997; bHamscher et al., 2000; cKolpin et al., 2000; dMaxin and Kögel-
Knabner, 1995; eLai et al., 1995; f Hoogerheide and Popov, 1979). 
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Table 2. Concentration of monensin A sodium salt after 48 hours in various media at 4 
°C and 22 °C. 

 4°C 22°C 

 

aCi 
 

bCeq  
 

Recovery 
 

Ci 
 

Ceq  
 

Recovery 
 

Matrix (mg L-1) (mg L-1) (%) (mg L-1) (mg L-1) (%) 
 

MilliQ water 0.89 0.95 106 0.89 0.99 111 
 

10 mM CaCl2 0.91 0.88 97 0.95 0.94 99 
 

500 mg L-1KNO3 0.99 0.85 86 1.02 0.86 84 
 

10 mM CaCl2 
and  500 mg L-

1KNO3 0.98 0.94 95 0.98 0.92 94 
       

5000 mg L-1 of 
NaN3 * * * * * * 

* = No peak was observed 
aCi = Initial aqueous phase concentration (mg L-1) 
bCeq = Equilibrium (48 hours) aqueous phase concentration (mg L-1) 
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Table 3. Selected physical-chemical properties of soils                                                                                                     

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Sample 

Identification 

Depth 

(cm) 

Organic 

Carbon 

(%) 

 pH CEC  

(meq100 g-1) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Soil 

Texture 

Surface soil  0-15 2.15 7.7 23.1 37 36 27 Loam 

Subsurface soil  80-120 0.64 7.6 12.7 57 23 20 Sandy Clay Loam 

Subsurface soil  168 0.23 8.2 15.7 47 30 23 Loam 
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Table 4. Partition coefficients (Kd±95% CI) and Koc of atrazine, enrofloxacin, monensin and sulfamethazine onto soils 
from various depths and wood chips 
Sorbent  Atrazine Sulfamethazine Enrofloxacin Monensin 

 Kd Koc Kd Koc Kd Koc Kd Koc 

Soil  
(0-15 cm) 

 

4.2 ± 0.2 197 5.5 ± 10.8 256 2747 ± 1936 127765 26 ± 24 1233 

Soil  
(80-120 cm) 

2.2±0.5 80 9.8 ± 3.8 587 a<DL bN/D N/D N/D 

Soil  
(168 cm) 

 

0.8 ± 0.2 354 0.6 ± 0.3 262 1357 ± 602 59003 101 ± 14 43965 

Wood chips 
 

24.1± 8.4 49 61 ±12 124 282 ± 169 571 24.2 ±8.8 49 

a<DL = Below detection limit 
bN/D = Not determined 
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Table 5. Sorption and desorption linear partition coefficients (Kd), Freundlich partition coefficients (Kf) and constants, n, 
of atrazine, enrofloxacin, monensin and sulfamethazine for wood chips.  (parameters reported with 95% confidence limit) 

Chemical Kf
a nsorp r2 Kd r2 Kfdes1

b ndes1 r2 Kfdes2 ndes2 r2 
            

Atrazine 65.5  
(6.5) 

0.82 0.98 66 
(12) 

0.98 176 
(246) 

 

0.82 0.96 240 
(66) 

1.35 0.82 

Sulfamethazin
e 

36.4  
(3.1) 

0.79 0.98 35.0 
(7.9) 

0.98 64 
(23) 

 

0.74 0.95 127 
(56) 

 

1.02 0.95 

Enrofloxacin 232  
(77) 

0.53 0.98 372 
(31) 

0.99 209 
(75) 

 

0.43 0.89 305 
(37) 

 

0.49 0.99 

Monensin 161  
(191) 

0.73 0.66 226 
(12) 

0.63 44 
(13) 

 

0.53 0.83 58 
(37) 

 

0.36 0.58 

aSorption experiments following 48 hours of equilibration  
bDesorption measurements 48 hours after sorption or first desorption experiments 
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Table 6. Apparent hysteresis index (AHI) values for atrazine, sulfamethazine and 
enrofloxacin.  

Chemical Ci 
aKfdes,AHI 

bndes r2 cAHI 
      
 mg L-1           

Atrazine 5.64 49.9 0.060 1.0 0.073 
 2.81 26.4 0.054 0.81 0.066 
 2.30 21.8 0.059 0.87 0.072 
 1.72 16.4 0.074 0.45 0.090 
 1.17 11.3 0.035 0.45 0.043 
      

Sulfamethazine 4.20 32.1 0.134 0.99 0.169 
 2.30 20.5 0.106 0.92 0.133 
 1.90 17.2 0.126 0.93 0.158 
 1.40 16.4 0.195 0.99 0.245 
 0.90 7.8 0.040 0.15 0.050 
      

Enrofloxacin 7.80 123.4 0.095 0.66 0.179 
 4.50 94.5 0.056 1.0 0.106 
 3.80 77.2 0.043 0.99 0.081 
 2.80 59.0 0.034 0.98 0.064 
 2.00 44.4 0.036 0.70 0.068 

aKfdes,AHI = Freundlich coefficient calculated based on adsorption, and two desorption data 
points for each concentration 
bndesorp = linearity parameter for desorption estimated by non-linear regression 
cAHI =Ratio of ndesorp / n sorp 
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Table 7. Atrazine partitioning coefficients, aKd, for various wood chip particle sizes and 
in medium with  and without NaN3. 

aKd = Mean of three replications of Kd ± 95% confidence interval 
bN/D = not determined 
 
 
 
  

 
Particle Size 

Medium  ≥ 4 mm 2-4 mm  150 µm-2 mm Homogeneous 
 Mixture 

   10 mM CaCl2 63±23 97±12 129±14 134±40 

10 mM CaCl2 & 
5000 mg L-1 NaN3  

73±39 bN/D 133±48  bN/D 
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Figure 1. Sorption-desorption isotherms of (a) atrazine, (b) sulfamethazine, (c) enrofloxacin and (d) monensin A sodium 
salt to wood chips. Symbols represent measured values (means, n=3). Solid lines show the isotherm predicted by non-linear 
regression using the Freundlich model.   
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Figure 2. Recovery of adsorbed (%) (a) atrazine, (b) sulfamethazine, (c) enrofloxacin, 
and (d) monensin. Desorption was performed with 10 mM CaCl2 followed by extraction 
with 80% acetonitrile. (Unextractable fraction =     , desorbed fraction 1=    , desorbed 
fraction 2 =    , solvent extraction fraction =   )                                                                                        
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CHAPTER 4. DISSIPATION OF ATRAZINE, ENROFLOXACIN AND 
SULFAMETHAZINE ON WOOD CHIP BIOFILTERS AND IMPACT IN WOOD 

CHIP DENITRIFIERS  

4.1 Abstract  

Wood chip bioreactors are receiving increasing attention as a means of reducing 

nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering 

wood chip bioreactors can be degraded and may impact denitrification in the bioreactor. The 

degradation of atrazine, enrofloxacin and sulfamethazine under denitrifying conditions using 

wood chips from an in situ reactor was studied. The impact of atrazine, enrofloxacin and 

sulfamethazine on denitrifying microorganisms was assessed using the denitrification 

enzyme potential assay (DEA), most probable number (MPN) and quantitative polymerase 

chain reaction targeting nosZ1 gene of the denitrifiers. Both enrofloxacin and atrazine 

disappeared rapidly within 48 hours from the aqueous phase with availability-adjusted rate 

constants of 0.8 d-1 and 4.5 d-1, respectively. The similar disappearance during the first 48 

hours in autoclaved and non-sterile wood chip solution suggested sorption as the dominant 

mechanism. For sulfamethazine, disappearance was slower with an availability-adjusted rate 

constant of 0.13 d-1. The presence of atrazine did not impair denitrification as shown by 

comparing the nitrous oxide (N2O) production rate for the DEA, the MPN and nosZ1 gene 

copy number with the control. For wood chips treated with enrofloxacin, MPN decreased at 

48 hours of incubation, whereas DEA and nosZ1 copy number were not affected. A 

significant difference in the MPN and the N2O production rate was observed on day 5 for 

sulfamethazine treatment compared to the untreated control. However, after 45 days, the N2O 

production rate, MPN and nosZ1 gene copy numbers for sulfamethazine were similar to that 

of the control, indicating that acclimation of the denitrifier population to the sulfamethazine 

or reduced bioavailability of sulfamethazine over time allowed recovery of the denitrifier 

population.  

 

Keywords: enrofloxacin, atrazine, sulfamethazine, denitrifiers, degradation, wood chips, 

nosZ1, nitrous oxide reductase 
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4.2 Introduction 

Tile drainage is practiced in many parts of the world, including the Midwest of United 

States, to enhance drainage of water-logged land for agricultural production (Kladivko et al., 

1999). However; suspended matter, excessive nitrate and various agricultural chemicals can 

be transported rapidly by tile water to surface waters. A major concern in the Midwest is the 

elevated of nitrogen concentrations in surface and subsurface drainage waters from 

agricultural systems (Jaynes et al., 2001, Jaynes et al., 2008, Kladivko et al., 1999).  

One possible approach in reducing the NO3
--N in tile water is to treat water with 

denitrification walls or in situ bioreactors. Several organic materials such as wood chips, 

cornstalks, sawdust and cardboard fibers have been used as a carbon source for 

microorganisms in denitrification walls. Denitrification with external carbon sources studies 

by Greenan et al. (2006) showed that higher nitrate removal rate was achieved with 

cornstalks as compared to wood chips, but wood chips provided a more stable percent 

removal and lasted longer in the fields than cornstalks. Greenan et al. (2009) also reported 

that NO3
--N removal as high as 100% with a denitrification wall can be achieved. Several 

factors can affect the denitrification in the denitrification walls or in situ bioreactors. These 

factors include oxygen concentration, pH, temperature, and amount of nitrogen and carbon 

(Hofstra and Bouwman, 2005) with water flow rate as a significant factor (Greenan et al., 

2009). Interestingly NO3
--N removal per gram of wood increased with increasing flow rate, 

but the percent of nitrate removal decreased from 100% to 30% when the flow rate increased 

from 2.9 to 13.6 cm d-1. 

In addition to NO3
--N, agrichemicals such as pesticides and antibiotics can be 

transported to surface waters via the tile drainage systems. Concentrations of pesticides in 

subsurface drainage water were found to be an order of magnitude lower than the 

concentrations in surface waters (Kladivko et al., 1999). For instance, atrazine concentrations 

ranging from 1.3-5.1 µg L-1 and 0.5-20.5 µg L-1 were detected in tile drain water and in 

lysimeter water, respectively along with atrazine metabolites, deethylatrazine and 

deisopropylatrazine at concentrations of 0.1-2.2 µg L-1 and 0.9-3.2 µg L-1, respectively 

(Jayachandran et al., 1994). Similarly, veterinary pharmaceuticals in manure when applied to 
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farm lands may be present in tile drainage water. For example, sulfamethazine and 

flubendazole were found at concentrations of 16 µg L-1 and 0.3 µg L-1 in soil seepage water 

when manure was treated with 600-1700 µg L-1 of sulfamethazine and 25-56 µg L-1 of 

flubendazole (Weiss et al., 2008).  

Persistent residues of sulfonamides and fluoroquinolones were found in the soil 

environment (Wang et al., 2006, Gölet et al., 2003, Yang et al., 2009) and there is limited 

information on the biological degradation of veterinary antibiotics in the subsurface 

environment. However biodegradation of enrofloxacin under aerobic and anaerobic 

conditions by two wood rotting fungi (Phanerochaete chrysosporium and Gloeophyllum 

striatum) in agricultural soils was observed (Wetzstein et al., 1997). In a similar manner, 

under aerobic conditions Accinelli et al. (2007) reported a half life of 18.6 days for 

sulfamethazine in soils treated with 10 µg L-1 indicating biological degradation is present. 

There are no prior studies indicating that enrofloxacin and sulfamethazine can be degraded 

under denitrification conditions. However, atrazine can be degraded under denitrifying 

conditions. Radosevich et al. (1995) showed that under denitrifying conditions atrazine can 

be mineralized by soil microorganism by cleaving the s-triazine ring. More recently Katz et 

al. (2000) characterized atrazine degradation and nitrate reduction by an isolated 

Pseudomonas sp. strain (Katz et al., 2001). Degradation of atrazine in wood chip biofilters is 

still unknown.   

The presence of antibiotics in tile water and ground water may negatively impact the 

aerobic and anaerobic microbial activity such as nitrification and denitrification (Costanzo et 

al., 2005). Antibiotics and pesticides entering a wood chip bioreactor could reduce the nitrate 

removal by interfering with wood chip denitrifier organisms. Soil microbiology assays can be 

adopted to study wood chip bioreactor microorganisms. Methods to investigate interactions 

of agrichemicals with soil microbial biomass include measurement of biomass respiration 

over time or the monitoring degradation of atrazine and changes in microbial biomass size 

(Ghani et al., 1996), and determination of metabolic activity such as monitoring N2O 

production and relating it with population counts (Martin et al., 1988). More recently, 

molecular biomarkers have been employed to study microbial communities. Several 

quantitative polymerase chain reaction (qPCR) assays were developed and evaluated (Henry 
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et al., 2006; Smith et al., 2006; Siciliano et al., 2007) in order to quantify and qualify 

denitrification gene prevalence in environmental samples. Kloos et al. (2001) and Henry et 

al. (2006) designed nosZ and nosZ1 primers which amplify gene fragments responsible for 

synthesis of nitrous oxide reductase (N2O R) which catalyzes the last step of denitrification. 

The fate of selected agrichemicals in soils has been well established; however there is a 

lack of information on degradation of these chemicals in wood chip reactors and the 

influence of these chemicals on microbial community established in the bioreactors. The 

objectives of this study are to study the degradation of atrazine, enrofloxacin and 

sulfamethazine on wood chips obtained from in situ reactors. The influence of these 

chemicals on the denitrifier community was measured by quantifying the denitrification 

activity, the denitrifier populations using the most probable numbers, and specific 

denitrification genes measured using qPCR.  

4.3 Materials and Methods  

4.3.1 Materials and chemicals 

 
Woodchips were collected June of 2009 at a depth of 120 cm from an in situ bioreactor 

at Iowa State University Research Farm, Ames, IA and stored in plastic bags at 4 °C until 

use. Details of bioreactor performance and construction are given by Jaynes et al. (2008). 

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was purchased from Chem 

Service (West Chester, PA). Enrofloxacin (1-cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-

1, 4-dihydro-4-oxo-3-quinolinecarboxylic acid) and sulfamethazine (4-amino-N-(4, 6-

dimethyl-2-pyrimidinyl)-benzenesulfonamide) were obtained from Sigma-Aldrich (St Louis, 

MO).  Working solutions of 26-100 mg L-1 of atrazine, enrofloxacin and sulfamethazine were 

prepared in MilliQ water from 1000 mg L-1 stocks solutions of sulfamethazine in MilliQ 

water and atrazine and enrofloxacin in acetonitrile. All standards were stored at 4 °C in 

amber bottles. 

4.3.2 Degradation studies 

For the biodegradation studies, 50-mL amber vials were filled with 20 mL of basal 

minimum salt (BMS) (1.6 g L-1 of K2HPO4, 0.4 gL-1 of KH2PO4, 0.2 gL-1 of MgSO4.7H2O, 
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0.1 g L-1 of NaCl, 0.025 g L-1 of CaCl2) solution at pH 7.2 containing 40 mg L-1 KNO3-N and 

autoclaved for 15 minutes at 121 °C. The vials lost about 1-2 mL of the volume due to 

autoclaving and the volume lost was replaced with sterile BMS. Wood chips were mixed 

thoroughly and 2 g of wood chips with 256 % moisture were weighed and added into each 

vial with sterile tweezers. All vials were sealed with Teflon® caps and evacuated with a 

vacuum manifold 3 times with a one-minute cycle using helium gas. The final helium 

relative pressure in the head space of vials was 5 kPa. A total of 21 vials were prepared for 

each chemical treatment and 3 of them were without wood chips and 3 of them were with 

sterile wood chips. The sterile treatments were not sacrificed until last sampling day. For the 

sterile control, 3 vials were immediately autoclaved on 3 consecutive days to sterilize and 

minimize microbial growth in the vials.  

 For the degradation studies, wood chips were pre-incubated in BMS for 7 days for 

acclimation since they had been kept at 4 °C for 3 months before the experiment, which may 

result in a reduction of microbial activity. At the end of the 7-day acclimation period each set 

of vials were spiked separately with 5 mL of 26 mg L-1 of atrazine, enrofloxacin or 

sulfamethazine to obtain an initial concentration of 5 mg L-1 in each vial. For the atrazine and 

enrofloxacin treated vials, the total volume of acetonitrile did not exceed 0.5% of the total 

solution volume. The final wood chips-to-solution ratio was 2:25 (weight: weight) in each 

vial. All vials were incubated under dark conditions in an incubator at a temperature of 

19±0.2 °C throughout the experiment. The pH of the solution was stable at 6.1±0.7 for 

atrazine vials, 6.0 ± 0.9 for enrofloxacin vials, and 6.2±0.4 for sulfamethazine vials. Nitrate 

was monitored using colorimetric test strips and ion chromatography. Additional KNO3 was 

added to each vial before nitrate was depleted in the vials.  

 After 0, 2, 5, 20 and 45 days of incubation, triplicate vials of each non-sterile 

treatment were sacrificed. An aliquot was removed with a sterile syringe from the vial and 

filtered with a 2-µm glass fiber filter. A 1.5-mL filtered aliquot was stored in a 2-mL HPLC 

amber glass vial with Teflon cap tip at 4 C° until they were analyzed for atrazine, 

enrofloxacin or sulfamethazine with protocols described below.  

The degradation or disappearance of the selected chemicals was modeled using the 

availability-adjusted first-order model that has been used previously for degradation of 
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sulfadimethoxine (Wang et al., 2006) and sulfamethazine (Lertpaitoonpan, 2008). The model 

is given: 

dC 
—  = k״ Ce –( at)       (1)    
dt 

 

ln (Ct/C0) = k״ (1-e-( at) a-1)      (2) 

 

where C0 and Ct are the concentrations of the chemicals at time t(d) and t(0); k״ is the 

availability-adjusted rate constant; and  a  is the first-order coefficient describing change in 

the non-adsorbed fraction of the chemicals. The first-order rate coefficient (k״) and the 

availability-adjusted rate constant were estimated using aqueous phase concentrations of the 

chemicals at different time points by non-linear least-squares regression.   

4.3.3  Extraction of atrazine, enrofloxacin, sulfamethazine  

 
At the end of 45 days, one g of wood chips from the sacrificed vials of the sterile and 

non-sterile treatment with atrazine, enrofloxacin and sulfamethazine were extracted for 

atrazine, enrofloxacin or sulfamethazine to determine the extractable mass available after 45 

days of incubation. The extraction solution used was 10 mL of 80:20 (v: v) acetonitrile and 

water and the pH was adjusted to 7.9±0.2 with ammonium acetate for enrofloxacin 

extraction. No pH adjustment of the extraction solution for atrazine and sulfamethazine 

extraction was made. The wood chips were shaken for one hour and mixed for 24 hours with 

the extraction solution. pH of the extraction solution was 7.5±0.2 for atrazine and 7.3±0.6 for 

sulfamethazine after 24 hours of equilibration. The supernatant was transferred into FEP 

tubes (30 mL) and centrifuged at 6586 x g for 20 minutes and then the supernatant 

transferred to 50-mL amber vials. Eighty percent of the total volume (acetonitrile in the 

supernatant) was evaporated using an analytical evaporator. The remaining extracted aliquots 

were then cleaned and concentrated with solid-phase extraction hydrophilic-lipophilic 

balance (HLB) cartridges. For atrazine extraction, manufacturer’s (Waters, Milford, MN) 

instructions were followed where the cartridges were conditioned with 3 mL of 100% 

methanol (MeOH) and 3 mL of deionized water; followed by loading the cartridges with the 
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sample; and then washing the cartridges with 3 mL of 5% MeOH and eluting with 3 mL 

100% MeOH. For the extraction and concentration of sulfamethazine the method by 

Henderson (2008) was applied where the cartridges were conditioned with 3 mL of 100% 

MeOH and 3 mL of 0.5 N HCl; the cartridges were loaded with the sample, the cartridges 

were then washed with 3 mL MilliQ water. Elution was conducted with 3 mL of 100% 

MeOH. The method by Gölet (2003) was used for enrofloxacin extraction and concentration. 

The cartridges were conditioned with 3mL of 100% MeOH and 3 mL of MilliQ water with 

the  pH adjusted to 3 with 0.5 N HCl. The cartridges were loaded with the extracted samples 

followed by vacuum drying for 5 minutes. The cartridges were eluted with 2.5 mL of 5% 

ammonium hydroxide in 100% MeOH and 0.5 mL 50 mM H3PO4 was added. MeOH in all 

elutes was evaporated using an analytical evaporator and the remaining solution brought to 2 

mL by adding MilliQ water. The final solution was analyzed using HPLC.  

Atrazine, enrofloxacin and sulfamethazine were analyzed with an Agilent HPLC Series 

1100 (Eagan, MN) with an Eclipse XDB-C18 column (3.5 µM diameter, 2.1x150 mm) and 

the detectors were diode array detector and a fluorescence detector. The HPLC eluent flow 

rate was 0.5 mL min-1 for atrazine and enrofloxacin analyses with the following solvents and 

times; 3 min of10% acetonitrile and 90% HPLC grade water (containing 4% glacial acetic 

acid and 1 mM ammonium acetate) followed by 70% acetonitrile and 30% HPLC grade 

water for 9 minutes and 10% acetonitrile and 90% HPLC grade water for the last 3 minutes. 

Retention times for atrazine and enrofloxacin were 12.1 and 8.1 minutes, respectively. The 

eluent flow rate for sulfamethazine was at 0.3 mL min-1 with 25% acetonitrile and 75% 

HPLC grade water for 8 minutes, increasing the acetonitrile to 45% for the next 3 minutes, 

followed by 100% acetonitrile for 2 minutes and finally the acetonitrile was reduced to 10% 

for last 5 minutes. Injection volumes used were 20 µL for enrofloxacin, 30 µL for atrazine 

and 50 µL for sulfamethazine. Detection wavelength was 254 nm for atrazine and 

sulfamethazine, and for enrofloxacin emission and excitation were 278 and 445, respectively. 

Column temperature was 60 °C for atrazine and enrofloxacin, and 40 °C for sulfamethazine. 
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4.3.4  Denitrifier population count - Most Probable Number 

 
 To estimate the denitrifier most probable number (MPN), a 1-mL aliquot was 

withdrawn from the same sacrificed vials used in the biodegradation studies after 0, 2, 5, 20 

and 45days of incubation. In addition to the vials from the biodegradation study, 15 vials 

with 25 mL of BMS and 2 g of wood chips were prepared like the vials in the degradation 

study and also incubated at 19 C° as the untreated control, and 3 vials were sacrificed at each 

sampling day for MPN analysis. The 1 mL aliquot withdrawn from vials at each sampling 

day was transferred to a sterile 20-mL screw cap dilution tube containing sterile 9 mL of 

potassium buffer (0.0125 M, pH 7.1). A serial 10-fold dilution was then performed by 

transferring 1 mL to the next dilution tube containing 9 mL of buffer solution giving a serial 

dilution ranging from 1x10-5 to 1x10-9. However, dilutions for day 45 samples were extended 

to give a dilution ranging from 1x10-6 to 1x10-10 in order to adjust the detection limits to 

provide a more sensitive estimation. From each dilution tube, 0.2 mL of aliquot was 

transferred into 5 MPN tubes. The tubes were vortexed and incubated at 22±1 C° for 15 days. 

The MPN tubes were prepared based on a method developed by Tiedje et al. (1989) as 

follows: nutrient broth powder (8 g L-1) and KNO3 (5 g L-1) were dissolved in MilliQ water 

and the solution was sparged with N2 gas for 20 minutes in the presence of anti-foaming 

agent to remove oxygen. Approximately, 5 mL of medium was dispensed into a 28-mL Balch 

tube, and the tubes were sealed with gray butyl septa and aluminum crimp rings. The tubes 

were then evacuated 3 times for 1 minute and filled with 5 kPa helium. The tubes were 

vented to atmospheric pressure after they were autoclaved for 15 minutes at 121 °C.  

 At the end of the 15th day incubation period, 0.3 mL of the supernatant was taken 

from each MPN tube with sterile syringes and tested for the presence of nitrate with 

diphenylamine solution. The diphenylamine solution was prepared by dissolving 2 g of 

diphenylamine [(C6H5)2NH] in 100 mL of concentrated sulfuric acid (H2SO4). For tubes 

which showed presence of nitrate, 2 mL of acetylene was added to each MPN tubes and then 

vented to atmospheric pressure before incubating for an additional one week. At the end of 

the week, 3 mL of helium was added to each MPN tube, and gas in the headspace of tubes 

was analyzed with a gas chromatograph to monitor presence of nitrous oxide.  
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4.3.5 Determination of nosZ1 abundance by qPCR  

 
The qPCR assays were performed with an MJ Research Thermal Cycler (Hercules, 

CA). The 25-µL reaction mixture was prepared as follows: 12.5 µL of 2X SYBR Green PCR 

Master Mix (QuantiTect SYBR green PCR kit; QIAGEN, France), 5.0 µL of 6.25 µM of 

each nosZ1 primer, 2.5 µL of template DNA. qPCR protocol for nosZ1 primers was adopted 

from Henry et al. (2006) with few modifications. Thermal cycling conditions were, an initial 

Taq polymerase (thermostable DNA polymerase) activation of 95°C for 15 min and 40 

cycles of 95°C for 15 s, 53°C for 15 s (annealing step), 72°C for 30 s, and 80°C for 15 s 

(acquisition data step) followed by  melting curve analysis from 50 °C to 90 °C.  

The primers used for PCR amplification were a pair of 259-bp gene fragments, nosZ 1 

F and nosZ 1R. The fragments were designed by Kloos et al. (2001) and modified by Henry 

et al (2006). Selected properties of the primers (oligos) are shown in Table 1. Primer 

concentrations per reaction was optimized by running combinations of 0.5, 0.75, 1.00, 1.25 

and 1.5 µM of both forward and reverse primer final concentrations. The higher 

amplification was achieved at 1.5 µM of each primer, although 1.25 µM gave a similar 

amplification rate. Annealing temperature for selected primers was determined by running a 

temperature gradient and evaluating the resulting qPCR products on an agarose gel (see 

Figure 1). The sharpest band was formed at annealing temperatures of 53 C° and 57 C° with 

the highest qPCR efficiency at 53 °C (data not shown). 

DNA for qPCR standard curves were prepared using Pseudomonas stutzeri ATCC 

14405 and Escherichia coli ATCC 43651 strains grown over night at 26 °C in marine broth 

(50 mL) and nutrient broth (50 mL), respectively and harvested with 10 mL of sterile 

potassium phosphate buffer (PPB). The cell numbers were estimated using the micro-drop 

technique on agar plates. A total of 2 x 109 cells were extracted according to the 

manufacturer’s (MOBIO Soil Power, CA) manual, and the DNA concentrations were 

estimated by spectrophotometry (BioPhotometer, Eppendorf, Germany). Extracted P. stutzeri 

DNA was diluted for preparation of standards which contained copy numbers between 105 

and 1010 per reaction assuming one copy per cell. qPCR standard curves (Figure 2)were 
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obtained by amplification of the 10-fold dilutions of P. stutzeri double stranded DNA 

(dsDNA) templates with nosZ1 F and nosZ1 R fragments. A set of templates that had initial 

copy numbers of 105 to 1010 cells of P. stutzeri was run each time with samples as standards. 

The amplification efficiency, E, was determined using the equation E = (10-1/slope ) -1, where 

the slope is the slope of the standard curve (Henry, et al., 2006). Linearity of standard curves 

(R2
≥99%) was observed each time with amplification efficiencies (E) approximately 83% 

with slopes of about -3.7. Amplification of E. coli DNA was not observed during the 40 

cycles indicating only fragments of nosZ1.  

For each sacrificed vial from the degradation study, wood chips were taken from the 

vials and stored at -20C° until the end of experiments. From a total of 14 vials for each 

treatment (control, atrazine, enrofloxacin or sulfamethazine treatments) two sets of 0.25g of 

wood chips were extracted for microbial DNA. Microbial DNA on wood chips was extracted 

with MOBIO Power Soil DNA Isolation Kit (CA, USA) following the supplier’s users 

protocol with several additional steps to increase DNA recovery. These additional steps 

include incubating the samples at 70 °C for 10 minutes and centrifuging the wood chips 

before the first step of extraction to remove excessive water. The amount of DNA extracted 

was increased by performing two consecutive lysis steps, but this approach reduced the 

qPCR efficiency by increasing contaminants in the DNA extract. To overcome variations as a 

result of material’s heterogeneity, wood chips from the same source were extracted two times 

and the extracts pooled. DNA concentrations were measured by using a spectrophotometer 

(Eppendorf, Germany) at a wavelength of 260 nm.  

Serial dilutions of microbial DNA extracted from wood chips were quantified and copy 

numbers of lower than 101 were spiked with P. stutzeri DNA template to detect for the 

presence of PCR inhibitors (data not shown). For each DNA sample, qPCR was performed in 

triplicate and results were pooled and 95% confidence intervals estimated. Melting curve 

analysis was used to check for the purity of P. stutzeri which appeared around 84 °C. The 

melting curve analysis revealed that the annealing temperature for environmental samples 

was not significantly different (see Figure 3).  
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4.3.6  Denitrification potential assays 

 
Denitrification potential assays were performed to determine the effect of atrazine, 

enrofloxacin and sulfamethazine on the denitrification process. Denitrification potential 

assays were performed based on a method developed by Tiedje (1994). For each set of 

treatment (atrazine, enrofloxacin, sulfamethazine or untreated control), a total of 15 amber 

bottles (250 mL) were prepared. For each bottle, 8 g of wood chips with 156% moisture 

content and 90 mL of BMS buffer containing 0.101 g L-1 KNO3 were added. The bottles 

were sealed with caps, evacuated 5 times with a 2-minute cycle and filled with helium gas to 

a final pressure of 5kPa. The bottles were incubated for 7 days at 19 °C with the vials for the 

degradation study, and at the end of 7th day 5 mL of 100 mg L-1 of atrazine, enrofloxacin or 

sulfamethazine were added in each set of the bottles except the control treatment. For the 

control treatments 5 mL of MilliQ water was added to bottles. Then 5 mL of 40 mg L-1 of 

KNO3-N was added to all bottles giving a final volume of 100 mL. The bottles were 

incubated under dark conditions in an incubator at a temperature of 19 ± 0.2 °C. 

Triplicate bottles were sacrificed for treatments for the denitrification potential assay 

on 0, 2, 5, 20 and 45 days after the chemicals were added to each bottle. Denitrification 

potential was measured by quantifying the amount of N2O produced under acetylene block 

(Tiedje, 1994). Each bottle was spiked with 10 mL of a solution containing 1.01 g L-1 of 

KNO3 and 2.5 g L-1 chloramphenicol giving a final concentration of at least 0.101 g L-1 of 

KNO3 and 0.25 g L-1 of chloramphenicol. Then the bottles were evacuated with vacuum 

manifold and acetylene was added to each bottle with a syringe to produce a 10% v/v 

concentration in the headspace, and all bottles were vented to atmospheric pressure. Bottles 

were placed on a reciprocating shaker. Ten mL of the gas in the bottles were collected after 

4, 8, 24 and 48 hours of addition of acetylene and stored in evacuated 6-mL glass vials sealed 

with gray butyl septa and aluminum crimp rings. Nitrous oxide concentrations in the vials 

were measured with gas chromatography (Model GC17A, Shimadzu, Kyoto, Japan) 

equipped with a 63Ni electron-capture detector and a stainless steel column (0.3175 cm 

diameter 3 and 74.54 cm long) with PorapakQ (80-100 mesh). Sample volume used was 10 
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mL. The analytical run was 9 minutes long, and the retention time of N2O was approximately 

4.4 minutes.  

During the 45-day incubation nitrate concentrations in the bottles were monitored by 

withdrawing 1 mL of the supernatant with a sterile syringe from the bottles and testing the 

presence of NO3
--N using nitrate/nitrite test strips. One mL of 40 mg L-1 KNO3-N was added 

to each bottle or each tube (degradation study tubes) when nitrate was about to be depleted. 

In order to estimate the amount of nitrate consumed per each bottle, 5 mL of supernatant was 

removed before and after addition of KNO3 solution, filtered with a 2-µm glass fiber filter 

and analyzed with ion chromatography with the method described below.  

NO3
--N concentration measurement followed the EPA method 300.1 and Dionex 

Application Note 154 where NO3
--N was measured with a Dionex ICS- 2000 Reagent-free 

Ion Chromatography (RFIC) System (Sunnyvale, CA). The column used was an Ion Pac 

AS18 (4 x 250 mm) analytical column while the detector was a digital conductivity detector. 

Eluent used for the ion chromatography was 22 mM KOH with a flow rate of 1.0 mL min-1. 

Injection volume of the sample was 25 µL. Data acquisition was performed with a 

Chromeleon 6.5 software. Stock solutions of 1000 mg L-1 of nitrate-N, nitrite-N, phosphate-

P, chloride, fluoride, sulfate and bromide were purchased from Dionex and were used to 

prepare standards.   

4.4 Results and Discussion  

4.4.1 Degradation of atrazine, enrofloxacin and sulfamethazine 

 
The results of the degradation experiments for atrazine, enrofloxacin and 

sulfamethazine are presented in Figure 4. The control without wood showed that the 

chemicals were stable throughout the experiment. More than 90% of aqueous concentration 

of atrazine and enrofloxacin were found to rapidly disappear within the first 48 hours. For 

sulfamethazine, there was a rapid disappearance to about half of the initial concentration 

within the first 48 hours which was followed by a slower disappearance over 30 days. For 

atrazine experiments, about 8.4% and 3.6% of initial concentration were measured for the 

sterile and non-sterile experiments, respectively at the end of 45 days in aqueous phase. 

Likewise, following 45 days of incubation, about 11.4% and 8.6% of sulfamethazine were 
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measured in sterile and non-sterile experiments, respectively. For enrofloxacin, about 5.5% 

and 1.4% of initial concentration was measured in the aqueous phase in sterile and non-

sterile experiments, respectively. At the end of degradation experiments, the amount of 

atrazine, enrofloxacin and sulfamethazine extracted from wood are presented in Table 2. For 

all three chemicals, there were no statistical difference between (α = 5%) the sterile and the 

non-sterile experiments. The percent of chemicals extracted after 45 days were 16.8% for 

atrazine, 14.2% and for sulfamethazine, 5.3% for enrofloxacin. The extracted fractions of 

adsorbed chemicals after 8 days of incubation in Chapter 3 were generally higher than the 

extracted recoveries for Chapter 4 such as 24.3% for atrazine, 22.4% for sulfamethazine, and 

7.8% for enrofloxacin. In general lower recoveries were attained for atrazine, enrofloxacin or 

sulfamethazine compared to the sorption experiments. The difference in extracted recoveries 

of the adsorbed chemicals between sorption and degradation experiments may be due to the 

longer equilibration time in the degradation experiments, which may have resulted in greater 

transfer of the chemicals into the inner pores of the wood. In general 70-90% of the chemical 

was accounted for by sorption and degradation.  

The loss of chemicals from solution was described with the adjusted first-order 

model. The availability-adjusted dissipation rate constants of atrazine, enrofloxacin and 

sulfamethazine for sterile and non-sterile wood chips are shown in Table 3. The rate constant 

for atrazine was 0.80 d-1. While the rate constant for atrazine was higher than rate constant 

for sulfamethazine (0.13 d-1), it was lower than the rate constant for enrofloxacin (4.52 d-1). 

Similar to rate constants, the highest unavailability coefficient (a) was estimated for 

enrofloxacin (1.02 d-1) and the lowest for sulfamethazine (0.05 d-1) and a was less than the 

value for enrofloxacin and higher than sulfamethazine for atrazine (0.25 d-1).  

A comparison of sterilized and non-sterilized treatments shows little difference for all 

chemicals, except for atrazine which showed greater loss of chemicals from water at 2 days 

in the non-sterile treatment than sterile treatment. One possible reason for the similar results 

in sterile and non-sterile treatments was that the sterile vials which were autoclaved three 

times did not fully sterilize the wood chips (Wolf et al., 1989). Aqueous phase samples from 

sterile vials at the end of the experiment inoculated onto agar plates showed microbial growth 

which indicated that autoclaving did not sterilize the wood chips. Based on the disappearance 
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of the aqueous concentration of the chemicals, it was probable that sorption was the main 

mechanism of loss but biological degradation cannot be entirely eliminated.  

Previous studies have shown that atrazine can be degraded by microorganisms under 

denitrifying conditions (Katz et al., 2000, Herzberg et al., 2004, Shapir et al., 1998). In a 

recent study by Hunter and Shaner (2010), a denitrifier barrier was shown to remove 98% of 

nitrate and 30% of atrazine in contaminated ground water, although the removal of atrazine 

may be due to sorption. These studies suggested that, atrazine degradation is possible under 

anoxic conditions and disappearance of atrazine in wood chip bioreactors may be due to not 

only sorption but also biodegradation. 

 The rate of sulfamethazine disappearance was lower than atrazine, probably due to 

less sorption of sulfamethazine. Yang et al. (2009) showed sulfadiazine degradation in anoxic 

soils with degradation rate constants of 0.0026-0.0121 d-1, for non-sterile soils and 0.0029-

0.0104 d-1for sterile soils, where after 24 hours of equilibration Kd values ranged between 

0.09-0.24 L kg-1suggesting sulfadiazine was persistent in anoxic soils. There are not many 

studies on sulfamethazine degradation under anoxic conditions. However, degradation of 

sulfamethazine under aerobic conditions and anaerobic conditions were shown by Henderson 

et al. (2008) and Lerpaitoonpan (2008) where the main mechanism was irreversible binding 

to soil.  

Fluoroquinolones on the other hand, bind to soils or organic matter strongly and their 

bioavailability is relatively lower than sulfonamides which may delay their biodegradation 

(Hektoen et al., 1995). The higher availability-adjusted dissipation rate coefficient for 

enrofloxacin than for atrazine and sulfamethazine may be due to this strong binding to 

organic matter property of enrofloxacin. Degradation of fluoroquinolones has not been 

showed under anoxic conditions but, biodegradation of enrofloxacin was shown under 

aerobic conditions by wood rotting fungus Gloephyllum striatum (Martens et al., 1996, 

Wetzstein et al., 1997).  

 Assuming that all the atrazine loss from the aqueous phase was due to sorption, the 

estimated Kd values for atrazine after 48 hours of equilibration were 690±240 L kg-1 and 

246±117 L kg-1 for non-sterile and sterile wood chips, respectively. This Kd value for sterile 

wood chips in the degradation experiment was lower than the Kd previously estimated for the 
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sorption experiments (66±12 L kg-1), whereas Kd for atrazine non-sterile treatment was 

comparatively higher (see Chapter 3). Kd values for sulfamethazine in the degradation 

experiments after 48 hours of equilibration were found to be 26.3±6.8 L kg-1 and 19.2±8.2 L 

kg-1, for sterile and non-sterile experiments, respectively which were in the same range of Kd 

calculated during the sorption experiment (35.7±7.9 L kg-1). Kd values for enrofloxacin 

estimated from degradation experiments, for sterile and non-sterile wood chips were 594±99 

L kg-1 and 899±453 L kg-1 which were higher than the Kd value (232 L kg-1) previously 

estimated in Chapter 3.  

The differences in the Kd values from the previous sorption experiments and these 

experiments can be attributed to the differences in the experimental protocols. Wood chips 

used in degradation and sorption experiments were taken from the bioreactor in 2009 and 

2006, respectively. The wood chips used in the sorption experiments were also prepared 

differently than wood chips in the degradation experiment. The wood chips were air dried for 

the sorption experiment, while the wood chips used in degradation experiment were 

relatively fresh and wet. The wood chips were sterilized with NaN3 in sorption experiments 

while they were autoclaved 3 times for the degradation experiment. During sorption 

experiments the tubes were mixed with a reciprocal shaker for 48 hours, whereas in 

degradation studies the tubes were not mixed. 

 Although sorption may be the main cause for the disappearance of the chemicals 

tested, the possibility of biodegradation cannot be ruled out based on the estimated higher Kd 

values for the degradation experiments as compared to the sorption experiments. Overall, it is 

probable that both biotic/abiotic degradation and sorption of atrazine, enrofloxacin and 

sulfamethazine may be occurring under denitrifying conditions with sorption the major 

mechanism.   

4.4.2 Denitrifying enzyme assays 

 
Potential denitrification was determined by measuring N2O in the presence of 

acetylene. N2O production rate over the 45-day period for each chemical and control are 

presented in Figure 5a. The rates were calculated based on the dry weight of the wood chips. 

The N2O production rate for the control reached a maximum at 20 days at 4.57µg N g-1h-1 



www.manaraa.com

78 
 

  

with a fairly similar production rate for the 45th day sampling event. The observed rate for the 

control was comparable to the rates reported by Greenan et al. (2006) at about 17.79 µg N g-

1h-1 for ground cornstalks and about 2.75 µg N g-1h-1 for wood chips over 180-day incubation 

period. The denitrification rate observed for the control was also less than the rate of 27.5-

36.4 µg N g-1h-1 for shredded newspaper reported by Volokita et al. (1996).  

After treatment with atrazine, the maximum N2O production rate was reached within 

the 5th day, with the 45th day N2O production rate statistically similar to that of the control 

(2.74±0.25 µg N g-1h-1 for control and 4.52±5.13 µg N g-1h-1for atrazine) indicating 

denitrification in wood chips was not inhibited by the presence of 5 mg L-1 atrazine. Work 

done by others showed that a pure culture of Pseudomonas sp strain ADP was capable of 

both atrazine degradation and denitrification at a rate of 90.8 mg NO3
--N g-1cell-1h-1 (Katz et 

al., 2000). However, denitrification activity of X. autotrophicus CECT 7064 was found to be 

inhibited in the presence of 10 mg L-1 of atrazine (Sáez et al., 2006). In this study, an aqueous 

concentration of 325 µg L-1 of atrazine was measured after 48 hours of equilibration, but the 

denitrification activity was not inhibited in the wood chips.  

An initial concentration of 5 mg L-1 enrofloxacin did not appear to have an effect on 

denitrification throughout the 45 days of incubation. This may be due to the reduced 

availability of enrofloxacin since there was a rapid decrease of enrofloxacin in solution (see 

Figure 4c).  

Sulfamethazine reduced the N2O production rate 2 days after treatment, (P = 0.0405) 

compared to the control, but N2O production gradually increased with time with the N2O 

production rates at 20 days and 45 days statistically similar to that of the control (P=0.354 for 

day 20 and P=0.847 for day 45). There are no prior studies on the effect of sulfamethazine 

and enrofloxacin on denitrification and therefore their effects were unknown. However, this 

study showed that there was an initial inhibition of denitrification by sulfamethazine, 

followed by recovery of both potential activities compared to the control. It is possible that 

with time, sulfamethazine becomes less may available due to sorption onto the wood, 

reflected by the slow decreases of sulfamethazine (see Figure 4b).  
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4.4.3 Most probable number-denitrifiers 

 
Denitrifier populations on wood, measured by MPN are presented in Figure 5b. The 

MPN for the untreated control showed a similar trend as that for the N2O production rate 

with an increase in MPN to a maximum in 5 days and then remaining a fairly constant value 

of 1x109 cells per g wood chips up to 45 days. The MPN for the vials with atrazine showed a 

slightly lower MPN than the control for the first 5 days, but showed a similar trend as the 

control with MPN statistically similar for the 20 and 45-day sampling event.  

Both vials for sulfamethazine and enrofloxacin showed a statistically significant 

decrease (P=0.0002) in the MPN on day 2, with an increase in MPN on day 5, followed by 

MPNs statistically similar to the control for 20 days (P=0.827). At day 45, the MPN for 

sulfamethazine and the control were statistically similar (P =0.599), while MPN for 

enrofloxacin was higher than the control (P=0.0023). One possible reason for the reduction in 

MPN on day 2 and similar MPN for sulfamethazine and control treatments at day 45 was the 

change in sulfamethazine bioavailability over time. Schauss et al. (2009) reported that by the 

presence of sulfadiazine in the manure, number of denitrifiers declined while with the 

reduction in the bioavailability of sulfadiazine, the abundance of denitrifiers increased. There 

are no studies indicating impact of enrofloxacin on denitrifiers.  

4.4.4 nosZ1 gene abundance 

 
The nosZ1 copy numbers are shown in Figure 5c. Over the 45 days of incubation a 

gradual increase in copy number was observed in control group, but was not statistically 

significant (P=0.760). A similar increment over time was observed for both MPN and nosZ1 

gene copy number, although the numbers obtained from the nosZ1 copy number were an 

order of magnitude higher than the MPN of denitrifiers. MPN populations were lower than 

the qPCR assay, possibly due to the limitation of cultural methods. Additionally, the lower 

and upper confidence limits (LCL and UCL) of the calculated MPN value cover a wide 

range.  For example, at day 0, MPN was 2 x 108, while LCL and UCL were 7 x 107 and 3 x 

108, respectively. On the other hand, non-specific amplification with SYBR Green can cause 

over estimation of nosZ1 copy number by qPCR. In this study, various concentrations of E. 

coli DNA were also run at each assay and no amplification was observed.  
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In atrazine-treated wood chips, the nosZ1 gene copy number increased over time with 

the copy number on day 2 not significantly different from the copy number in the control (P 

= 0.543) while it was significantly higher than the control on day 5 (P=0.01) and day 20 

(P=0.012). At the end of the experiment at day 45, the copy number in the atrazine 

experiment and control experiment were not different (P=0.06).  

For enrofloxacin-treated wood chips, copy numbers of nosZ1 was similar to the control 

over 45 days of incubation. The significant reduction in MPN at 2 days for enrofloxacin was 

not observed with qPCR. However, N2O production rates over time under enrofloxacin 

treatment supported the change in nosZ1copy number.  

In contrast to enrofloxacin treatment, the number of denitrifiers at 5 days was reduced 

in the presence of sulfamethazine in comparison to the control (P = 0.0049). Eventually, after 

day 20, the copy numbers in sulfamethazine treatment, atrazine, enrofloxacin and control 

were similar; suggesting the impact of antibiotics on denitrifiers was alleviated within 20 

days of chemical addition. Sulfonamides were found to be impacting denitrifier copy number 

by Kotzerke et al. (2010) and Schauss et al. (2009) suggesting sulfamethazine may have 

inhibited denitrifiers during the 5 days of incubation.  

4.5 Conclusion 

 Disappearance of atrazine, enrofloxacin and sulfamethazine in wood chips taken from 

an in situ reactor may be primarily due to sorption and to limited degradation. The rapid 

disappearance observed for atrazine and enrofloxacin during the first 48 hours of incubation 

was mainly due to sorption which reduces the bioavailability of the chemical. Sulfamethazine 

disappearance was slower than atrazine and enrofloxacin, which could be due to less sorption 

onto wood chips. Denitrification rates on wood chips and denitrifier numbers estimated by 

MPN and qPCR were not inhibited by the concentration of 5 mg L-1 of atrazine. At the same 

concentration, enrofloxacin only inhibited MPN at 48 hours but did not impair N2O 

production rate or nosZ1 copy number. However that concentration of sulfamethazine 

impaired both N2O production rate and growth of denitrifiers during the first 5 days of 

incubation. With a reduction in the aqueous concentrations of sulfamethazine over time, N2O 

production rate and denitrifier populations recovered and were similar to the control at the 
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end of 45 days of incubation. The results of this study suggested wood chip bioreactors may 

remove agrochemicals by sorption and degradation. The presence of agrochemicals may 

impact denitrification potential of wood chip bioreactors by temporarily inhibiting denitrifier 

populations.   
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Table 1. Selected properties of synthesized oligos: nosZ 1F and nosZ 1 R. 
 
 
 

Oligo Name nosZ 1 F nos Z 1 R 

Sequence 5’ WCS YTG TTC MTC 

GAC AGC CAG 3’ 

5’ ATG TCG ATC ARC 

TGV KCR TTY TC 3’ 

Oligo Length 21 23 

Concentration 

per well 

1.25 µM 1.25 µM 
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Table 2. Recoveries of atrazine, enrofloxacin and sulfamethazine in aqueous phase and 
the recoveries of adsorbed chemicals with solvent extraction from sterile and non–
sterile wood chips incubated at 19 °C under denitrifying conditions at the end of 45 
days.  

Chemicals 

Initial Aqueous  

Concentrations  

(mg L-1) 

% Recovery (± 95% *CI) 

Aqueous phase Wood chips 

Sterile 

 

Non–Sterile 

 

Sterile 

 

Non–Sterile 

 

Atrazine 4.1-4.8 8.4 3.6 22.5 ±5.3 16.8±1.9 

Enrofloxacin 5.2-6.0 5.5 1.4 8.2 ±2.6 5.3±4.6 

Sulfamethazine 5.0-5.4  11.4 8.6 16.9±2.1 14.2±3.6 
* CI = Confidence Interval 
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Table 3.  Degradation rate constants and availability coefficients of atrazine, 
enrofloxacin and sulfamethazine (means reported with 95% CI). 

Chemical / 
Treatment Type 

Rate Constant (k״) Availability 
Coefficient (a) 

r2 

Atrazine    
Sterile 0.81±0.27 0.25±0.09 0.97 

Non-sterile 0.80±0.25 0.25±0.09 0.98 
    

Enrofloxacin    
Sterile 3.95±2.72 1.25±0.90 0.98 

Non-sterile 4.52±1.12 1.02±0.09 0.99 
    

Sulfamethazine    
Sterile 0.24±0.12 0.12±0.06 0.97 

Non-sterile 0.13±0.08 0.05±0.05 0.94 
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Figure 1. Gel eletrophoresis of gradient qPCR products of nosZ1 gene amplifications, 
annealing temperatures varying between 50 C° and 75 C°.  
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Figure 2. Standard curve for nosZ1 showing initial copy number of P. stutzeri against 
threshold cycle number (CT).  
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Figure 3. Melting curve analysis for amplicons of P. stutzeri (a) and wood chips DNA 
templates  (b)  obtained by nosZ1 primers.  
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Figur 4. Loss of (a) atrazine, (b) sulfamethazine, (c) enrofloxacin from water incubated 
with wood chips. The control treatment is water amended with chemicals without wood 
chips.  
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Figure 5. (a) Denitrification rate, (b) most-probable-number, (c) nosZ1 gene copy 
number for control, atrazine, enrofloxacin and sulfamethazine. Denitrification activity 
was measured as N2O production in the presence of acetylene.  
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CHAPTER 5 CONCLUSION 
 

Agrochemicals entering the environment via direct application of pesticides and 

manure amendments (mostly veterinary antibiotics) may impact and interfere with the 

environmental quality. Contamination of groundwater with pesticides and veterinary 

antibiotics is of concern due to their potential health effects and potential development of 

resistant microorganisms. Wood chip reactors are used to remove nitrate from tile drainage 

water and these reactors may also reduce the transport of pesticides and pharmaceuticals. 

Sorption-desorption of atrazine, enrofloxacin, monensin and sulfamethazine were 

investigated in Chapter 3, and sorption of atrazine, enrofloxacin and sulfamethazine to wood 

chips was found to be higher than their sorption to soils.  This may be due to macro porosity, 

hydrophobic groups and organic C content of wood chips as compared to the soils used in 

this research. Freundlich isotherms were better for modeling the sorption-desorption data of 

the four chemicals than a linear model since partitioning of the selected chemicals onto 

woodchips was not linear. Of the four chemicals tested, sulfamethazine, with the highest 

water solubility, partitioned less onto the wood chips than the other three chemicals, whereas 

enrofloxacin partitioned the most. Desorption hysteresis was more notable for atrazine and 

sulfamethazine than enrofloxacin and suggests less tendency to desorb. Sorption-desorption 

hysteresis also increased for higher solute loads for sulfamethazine, whereas it decreased for 

atrazine and enrofloxacin. On the other hand, the first desorption experiments for monensin 

with water suggests that a fraction of monensin was sorbed onto the wood chips due to its 

large molecular structure.  

 For the degradation studies, disappearance of atrazine, enrofloxacin and 

sulfamethazine in wood chips over 45 days was described in Chapter 4. Monitoring with 

HPLC showed that the disappearance of all three chemicals was due to mainly sorption and 

limited degradation. During the first 2 days of incubation about more than 90% of atrazine 

and enrofloxacin disappeared, while about half of the sulfamethazine added remained in the 

vials, indicating bioavailability of sulfamethazine was higher than atrazine and enrofloxacin. 

At the end of the 45-day incubation period extractable percentages for atrazine, enrofloxacin 

and sulfamethazine were lower than extractable percentages at the end of 8 days for the 
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sorption experiment which suggested that long-term incubations caused the selected 

chemicals to be degraded or to become unavailable. Disappearance of sulfamethazine was 

slower than disappearance of atrazine and enrofloxacin.  

 Chapter 4 provides information on the effect of atrazine, enrofloxacin and 

sulfamethazine on denitrification potential and denitrifier community size on wood chips. 

Atrazine added at an initial concentration of 5 mg L-1 did not inhibit denitrification enzyme 

activity or the denitrifier population on wood chips; however sulfamethazine at same 

concentration reduced denitrification rate and population of denitrifiers estimated by MPN 

and qPCR during the first 5 days of incubation. However, after 45 days the denitrification 

rate and denitrifier populations were similar to rates and populations of the untreated control. 

In a similar manner enrofloxacin did not interfere with denitrification rate, but the MPN was 

reduced compared to the first two days of incubation although nosZ1 copy number did not 

decline. The results of this study indicate that these antibiotics are unlikely to impact the 

performance of wood-chip reactors used for nitrate removal from drainage water.  
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APPENDIX A.WOOD CHIP DENITRIFYING REACTOR 
 
 Wood chips were collected from Iowa State University Research Farm, Ames, IA and the 

collection site is shown in Figure 1a, 1b, and 1c. The reactor is located in a field with corn-

soybean rotation. It was set up 10 years ago.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1.(a) Wood chips collection site, (b) excavating wood chips and (c) collected 
wood chips.  

(a) (b) 

(c) 



www.manaraa.com

96 
 
 

  

APPENDIX B. ORGANIC SOLVENT EXTRACTION SET UP 
 Selected chemicals were extracted from wood chips as described in Chapter 3 and 

Chapter 4. Prior to extraction of the chemicals from wood chips with HLB SPE cartridges, 

the organic solvent was evaporated with an analytical evaporator (Figure B.1.), and then 

cleaned up and concentrated with HLB SPE cartridges using the vacuum manifold ( Figure 

B.2.)  

 

 

 

 

 

 

 

 

 

 

Figure B.1. Evaporation of organic solvent (acetonitrile) from samples under N2 gas 
flow at 40 C°.  
 

 

 

 

 

 

 

 

 

 

Figure B2. Cleaning and concentrating extracted chemicals with HLB cartridges with 
selected SPE methods  
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APPENDIX C. HPLC CHROMATOGRAMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.1.  Chromatogram of (a) atrazine standard (1 mg L-1), (b) supernatant 48 
hours after wood chips spiked with 1 mg L-1atrazine.  
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Figure C.2. (a) Sulfamethazine standard (5 mg L-1), (b) wood chips spiked with 
sulfamethazine (5 mg L-1)at day 5.   
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Figure C.3. (a) enrofloxacin standard (1 mg L-1)  (b) enrofloxacin chromatogram after 
48 hours of application onto woodchips 
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APPENDIX D. DATA FOR CHAPTER 3 
 
Table D.1. Atrazine Sorption – Desorption Isotherms Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
C

he
m

. 

Cinitial Caq-sorp Caq-desorb1 Caq-desorb2 Cwood-sorp 
Cwood-

desorb1 
Cwood-

desorb2 

 mg L-1 mg L-1 mg L-1 mg L-1 mg kg-1 mg kg-1 mg kg-1 

A
tr

az
in

e 

0.55 0.08  -   -  4.66  -   -  

1.17 0.10 0.02 0.04 10.54 10.22 9.95 

1.71 0.16 0.09 0.06 15.07 13.57 13.24 

2.30 0.23 0.13 0.08 20.31 19.03 18.55 

2.88 0.31 0.18 0.10 25.19 23.61 22.96 

5.65 0.71 0.30 0.19 48.87 46.31 45.03 

        

E
nr

of
lo

xa
ci

n 

1.17 
 

0.01 
 

  32.28 
 

  

2.08 0.04 0.04 
 

0.02 39.89 38.89 
 

38.30 
 

2.90 0.09 0.04 0.03 54.41 53.21 52.35 

3.70 0.11 0.07 0.05 69.98 68.81 67.70 

4.52 0.15 0.09 0.07 84.92 82.68 80.98 

7.84 0.23 0.22 0.11 109.9 103.78 100.15 
        

M
on

en
si

n 

0.77 0.05 - - 7.09 - - 

1.74 0.06 0.12 0.06 16.42 15.48 14.96 

2.22 0.04 0.26 0.06 21.32 19.01 18.52 

2.52 0.06 0.34 0.03 24.17 21.08 20.80 

3.66 0.08 0.40 0.12 35.12 31.74 30.67 

4.23 0.16. 0.66 0.22 40.48 34.62 32.62 
        

S
ul

fa
m

et
ha

zi
ne

 0.52 0.08 -  4.38 - - 

0.93 0.17 0.03 0.07 7.45 7.04 6.22 

1.42 0.20 0.12 0.08 12.00 10.69 9.96 

1.93 0.34 0.13 0.11 15.01 13.64 12.77 

2.36 0.43 0.15 0.12 18.72 17.12 16.04 

4.20 0.82 0.32 0.22 21.17 27.76 25.80 
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Table D.2. Desorption and Organic Solvent Extractions 

aM i
 = Initial mass in the aqueous phase 

b%  = Recovery percentage of adsorbed chemical from wood chips 
 
 
 

Chemical aM i Desorb Desorb Solvent  Chemical Mi Desorb Desorb Solvent 

  1 2 Extraction   1 2 Extraction 

 mg b% % %   mg % % % 

ATRAZ 11.57 2.06 2.76 -  ENRO 20.44 0.04 2.96 1.27 

ATRAZ 11.41 - - 17.09  ENRO 20.46 0.05 2.35 0.27 

ATRAZ 11.58 - - -  ENRO 20.31 0.07 1.56 1.12 

ATRAZ 16.71 5.47 1.99 16.11  ENRO 28.12 0.38 1.62 1.33 

ATRAZ 16.44 18.78 2.82 -  ENRO 28.45 0.84 1.41 1.53 

ATRAZ 16.61 5.10 2.99 26.41  ENRO 28.44 2.86 2.30 0.62 

ATRAZ 22.39 4.70 2.53 15.98  ENRO 33.63 0.38 2.43 1.59 

ATRAZ 22.63 - - -  ENRO 36.61 2.01 - - 

ATRAZ 22.66 7.20 1.71 16.73  ENRO 36.22 0.24 2.08 1.24 

ATRAZ 28.17 8.87 2.71 13.80  ENRO 44.12 0.89 2.64 1.44 

ATRAZ 28.24 5.21 2.11 -  ENRO 44.68 1.38 2.07 1.43 

ATRAZ 28.24 4.54 1.78 18.61  ENRO 44.46 1.42 2.08 1.63 

ATRAZ 55.22 6.29 3.18 8.46  ENRO 77.49 2.38 2.97 1.83 

ATRAZ 56.55 3.36 2.67 -  ENRO 68.96 2.10 3.93 1.52 

ATRAZ 55.77 5.48 2.36 15.80  ENRO 75.13 2.56 4.82 1.43 

           

SMZ 9.14 1.30 1.11 15.39  MON 17.09 7.24 1.54 0.67 

SMZ 9.13 4.90 - -  MON 17.13 4.99 2.63 0.01 

SMZ 9.19 10.56 - -  MON 17.14 4.84 5.50  

SMZ 14.03 9.49 0.71 11.41  MON 21.81 8.81 2.93 0.13 

SMZ 13.94 14.08 0.74 11.32  MON 21.89 10.70 1.58 0.44 

SMZ 13.94 9.67 0.68 10.12  MON 21.86 12.99 2.42 0.36 

SMZ 17.02 10.56 0.96 12.80  MON 24.87 13.00 2.73 1.46 

SMZ 18.84 9.56 0.76 12.11  MON 24.98 11.43 0.94 0.13 

SMZ 19.10 8.44 0.75 19.12  MON 24.89 13.96 -0.22 0.73 

SMZ 23.19 9.84 0.71 12.12  MON 36.27 11.03 2.15 0.19 

SMZ 23.33 6.26 0.74 12.43  MON 35.92 9.38 2.41 1.12 

SMZ 23.19 10.04 0.67 8.77  MON 36.18 8.47 4.54  

SMZ 41.13 12.05 0.85 10.28  MON 44.05 13.31 3.88 0.14 

SMZ 41.48 10.13 0.71 10.92  MON 41.06 14.85 5.36 0.07 
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APPENDIX E DATA FOR CHAPTER 4 
 
Table E.1. Dissipation Assay. Atrazine, Enrofloxacin, Sulfamethazine in aqueous phase 
and solid phase over 45 days.  

   Sterile Non - Sterile 
Chemical Time Control wood chips wood chips 

  Caq Caq Caq 
     
 days mg L-1 mg L-1 mgL-1 

Atrazine 0 4.23 4.01 4.89 
Atrazine 2 4.25 1.55 0.32 
Atrazine 5 4.25 0.30 0.26 
Atrazine 20 4.23 0.18 0.31 
Atrazine 30 4.24 0.19 0.40 
Atrazine 45 4.26 0.14 0.41 

Enrofloxacin 0 5.29 5.46 5.14 
Enrofloxacin 2 5.35 0.30 0.11 
Enrofloxacin 5 5.27 0.24 0.07 
Enrofloxacin 20 5.33 0.18 0.07 
Enrofloxacin 30 - 0.30 0.07 
Enrofloxacin 45 5.40 0.30 0.05 

Sulfamethazine 0 5.15 6.00 5.26 
Sulfamethazine 2 4.91 3.12 3.48 
Sulfamethazine 5 4.79 2.48 2.59 
Sulfamethazine 20 5.00 1.13 1.50 
Sulfamethazine 30 - - 0.57 
Sulfamethazine 45 5.35 0.69 0.63 
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Table E2. Nitrous oxide production rate calculations 
Treatment 

Description 
Sampling N2O prod. Mean of 

STDEV 
Type Time rate triplicates 

      
  days ug N g-1hr-1 ug N g-1hr-1  

Control no chemical 0 1.34 
1.22 0.32 Control no chemical 0 0.86 

Control no chemical 0 1.47 
Control no chemical 2 2.91 

2.53 - 
Control no chemical 2 2.16 
Control no chemical 5 2.42 

1.73 0.60 Control no chemical 5 1.28 
Control no chemical 5 1.50 
Control no chemical 20 8.04 

4.57 3.01 Control no chemical 20 2.61 
Control no chemical 20 3.06 
Control no chemical 45 2.48 

2.74 0.23 Control no chemical 45 2.90 
Control no chemical 45 2.84 
Atrazine 5 mg/L 0 1.34 

1.22 0.32 Atrazine 5 mg/L 0 0.86 
Atrazine 5 mg/L 0 1.47 
Atrazine 5 mg/L 2 4.07 

4.07 0.32 
Atrazine 5 mg/L 2 3.31 
Atrazine 5 mg/L 5 1.64 

4.90 3.00 Atrazine 5 mg/L 5 7.55 
Atrazine 5 mg/L 5 5.50 
Atrazine 5 mg/L 20 2.01 

3.12 1.03 Atrazine 5 mg/L 20 3.30 
Atrazine 5 mg/L 20 4.04 
Atrazine 5 mg/L 45 10.65 

5.49 4.53 Atrazine 5 mg/L 45 3.62 
Atrazine 5 mg/L 45 2.19 
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Table E.3. Most-probable-number  enumarations for denitrifiers under atrazine, 
enrofloxacin and sulfamethazine treatments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sample Day MPN UCL LCL 
     

Control 0 3.5E+08 3.11E+08 1.E+08 
Control 0 9.5E+07 3.14E+08 3.E+07 
Control 2 7.5E+08 3.11E+08 2.E+08 
Control 2 8E+08 2.63E+09 2.E+08 
Control 5 2.1E+09 3.11E+08 6.E+08 
Control 5 1E+08 1.01E+08 3.E+07 
Control 20 2.1E+08 6.97E+08 6.E+07 
Control 20 1.2E+09 3.8E+09 3.E+08 
Control 45 9.8E+08 3.5E+09 2.9E+08 

     
Atrazine 0 3.5E+08 3.11E+08 1.E+08 
Atrazine 0 9.5E+07 3.14E+08 3.E+07 
Atrazine 2 7E+09 2.29E+10 2.E+09 
Atrazine 2 2.4E+08 7.96E+08 7.E+07 
Atrazine 5 6.3E+08 2.08E+09 2.E+08 
Atrazine 5 3.5E+08 1.15E+09 1.E+08 
Atrazine 20 2.2E+08 7.31E+08 7.E+07 
Atrazine 20 5.4E+08 1.77E+09 2.E+08 
Atrazine 45 2.4E+09 7.9E+09 7.3E+08 

     
Enrofloxacin 0 3.5E+08 3.11E+08 1.E+08 
Enrofloxacin 0 9.5E+07 3.14E+08 3.E+07 
Enrofloxacin 2 5.8E+07 1.91E+08 2.E+07 
Enrofloxacin 2 1.8E+07 60253354 6.E+06 
Enrofloxacin 5 2E+08 6.75E+08 6.E+07 
Enrofloxacin 5 2.2E+08 7.31E+08 7.E+07 
Enrofloxacin 20 9.9E+07 3.26E+08 3.E+07 
Enrofloxacin 20 1E+09 3.37E+09 3.E+08 
Enrofloxacin 45 8.3E+09 2.7E+10 2.5E+09 

     
Sulfamethazine 0 3.5E+08 3.11E+08 1.E+08 
Sulfamethazine 0 9.5E+07 3.14E+08 3.E+07 
Sulfamethazine 2 3E+07 98983456 9.E+06 
Sulfamethazine 2 7.6E+08 2.51E+09 2.E+08 
Sulfamethazine 5 1.4E+08 4.77E+08 4.E+07 
Sulfamethazine 5 2.2E+08 7.1E+08 7.E+07 
Sulfamethazine 20 3.6E+08 1.19E+09 1.E+08 
Sulfamethazine 20 1.6E+09 5.17E+09 5.E+08 
Sulfamethazine 45 6.3E+08 5.2E+08 4.3E+07 
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Table E4. noz1 copy numbers based on qPCR threshold cycle numbers 

Chemical 
Time nosZ1  

Chemical 
Time nosZ1 

 copy no   copy no 
 Days    Days  

Enrofloxacin 2 1.04E+08  Control 0 2.29E+08 
Enrofloxacin 2 1.02E+08  Control 2 1.84E+08 
Enrofloxacin 5 3.14E+08  Control 2 1.06E+08 
Enrofloxacin 5 1.94E+08  Control 5 5.24E+08 
Enrofloxacin 5 1.11E+08  Control 5 3.34E+09 
Enrofloxacin 20 1.9E+09  Control 20 2.48E+09 
Enrofloxacin 20 1.88E+09  Control 20 8.4E+09 
Enrofloxacin 20 2.32E+09  Control 20 5.11E+08 
Enrofloxacin 45 5.88E+08  Control 45 1.06E+10 
Enrofloxacin 45 1.66E+09  Control 45 1.78E+08 
Enrofloxacin 45 3.34E+09  Control 45 56098017 

Sulfamethazine 2 2.92E+08  Atrazine 2 1.32E+08 
Sulfamethazine 2 1.37E+08  Atrazine 2 5.57E+08 
Sulfamethazine 5 1.66E+08  Atrazine 5 1.35E+09 
Sulfamethazine 5 1.7E+08  Atrazine 5 6.91E+08 
Sulfamethazine 5 1.3E+08  Atrazine 5 3.28E+08 
Sulfamethazine 20 2.37E+08  Atrazine 20 9.85E+09 
Sulfamethazine 20 2.5E+08  Atrazine 20 4.74E+10 
Sulfamethazine 20 3.37E+08  Atrazine 45 3.21E+09 
Sulfamethazine 45 3.6E+08  Atrazine 45 5.83E+09 
Sulfamethazine 45 3.36E+08  Atrazine 45 4.86E+09 
Sulfamethazine 45 3.71E+09     
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